
High Performance Data
Transfer

Phillip Dykstra
Chief Scientist

WareOnEarth Communications Inc.
phil@sd.wareonearth.com

SC2006 Tutorial M07
13 November 2006

2

Online Copy

• This tutorial can be found at
– http://www.wcisd.hpc.mil/~phil/sc2006/

3

Motivation

If our networks are so fast, how
come my ftp is so slow?

4

Unique HPC Environment

• The Internet has been optimized for
– millions of users behind low speed connections
– thousands of high bandwidth servers serving

millions of low speed streams
• Single high-speed to high-speed flows get

little commercial attention

5

Tutorial Focus

• Moving a lot of data
– Quickly
– Securely
– Error free

• Linux / Unix systems
• Open Source tools

6

Objectives
• Look at current high performance networks
• Fundamental understanding of delay, loss,

bandwidth, routes, MTU, windows
• Learn what is required for high speed data transfer

and what to expect
• Look at many useful tools and how to use them for

performance testing and debugging
• Examine TCP dynamics and TCP’s future
• Look at alternatives to TCP and higher level

approaches to data transfer

7

Topics
Slide #

• Lessons from top500.org 9
• High Performance Networks 28
• Fundamental Concepts

– Delay 49
– Routes 70
– Packet Size 88
– Bandwidth 98
– Windows 131

• TCP Performance 147
• Performance Tuning 192

8

Topics
• Testing and Debugging 209
• Going Faster 273
• UDP Transfer Protocols 308
• Beyond TCP and UDP 316
• Data Integrity 345
• Storage Area Networks 368
• Peer to Peer 380
• Abstract Storage Layers 394

9

Lessons from top500.org

10

Lessons from top500.org

• Operating Systems
– Linux, 73%
– Unix, 20%
– Mac OS, 1%
– Windows, 0.4%

• HPC is a Linux/Unix world (93%)
– Yet Windows has perhaps a 90% share of the

desktop market

11

Lessons from top500.org

• Interconnects
– Gigabit Ethernet, 51%
– Myrinet, 17% (Myricom)
– SP Switch, 8% (IBM)
– InfiniBand, 7%
– Proprietary, 5%
– Quadrics, 3%

12

Ethernet

• On nearly every computer in the world
• 1 Gbps Ethernet is now ~ $10/port

– 10/100/1000 on copper (cat5)
• 10 Gbps Ethernet is now about

– $2000 on fiber
– $1000 on copper (CX4)

• Router interfaces cost $$$ more

13

Myricom

Myri-10G PCI-Express NIC
dual-protocol

10-Gigabit Ethernet and 10-Gigabit Myrinet

• MX/Ethernet does Myricom Express (MX) over standard Ethernet
• Claim 2.4 usec application latency (“5 to 10 times lower than TCP/IP”)

Done via kernel bypass, application to NIC
• Myrinet-2000 is 2 Gbps

14

InfiniBand

• High speed serial interconnect
• Grew out of Future I/O (Compaq, IBM, HP) and

NGIO (Intel, Microsoft, Sun) projects
• Some are doing InfiniBand over the WAN

96 Gbps48 Gbps24 Gbps12X

32 Gbps16 Gbps8 Gbps4X

8 Gbps4 Gbps2 Gbps1X

QDRDDRSDR

Single, Double, Quad Data Rates

Link
Aggregation

•

15

Quadrics

• QsNet is 10 bit parallel
copper, 900 MBps data rate
(7.2 Gbps)

• QsTenG uses 10GigE on
copper (CX4)

16

Lessons from top500.org

• HPC is a Linux/Unix world
– Fortunately Linux has great networking

“Based on all the measurements I’m aware of,
Linux has the fastest and most complete
[networking] stack of any OS”

Van Jacobson, Jan 2006

17

Lessons from top500.org

• All top systems are parallel
– Smallest was 32 processors, median ~1024
– Even CPU’s are going parallel (multi core)
– Networks have gone parallel also (WDM)

• 1 Gbps and 10 Gbps Ethernet is taking over
the world
– So why aren’t WANs Ethernet (yet)?

18

Quick Layer Review

Ethernet / MPLS / POS

TCP / UDP / SCTP

(Middleware)

IP / ATM

Copper / Fiber 1. Physical / Optical

2. Data Link / Switching

3. Network / Routing

4. Transport / End-to-End

Applications 7. Application

19

Internet Protocols

IP (v4 or v6)

UDP17TCP6

Routing
Layer

End-to-End
Layer

MPLS, ATM, Ethernet, POS, GFP, UCLP, etc.

Web
Email
SSH
FTP
P2P
…

DNS
NTP
VOIP

Multicast
Streaming Media

…

20

Encapsulation

TCP
header TCP Payload

IP
header IP Payload

Ethernet
header Ethernet Payload (1500/9000) Ether

CRC

20

20/40

14/18 4

21

WAN Circuits
• TDM – Time Division Multiplexing (“copper”)

– T1, 1.544 Mbps
– T3, 44.736 Mbps

• SONET – Synchronous Optical Network (“fiber”)
– OC3, 155.520 Mbps
– OC12, 622.080 Mbps
– OC48, 2.488 Gbps
– OC192, 9.953 Gbps (“10 Gbps”)
– OC768, 39.813 Gbps (“40 Gbps”)

22

Relative Bandwidths

T1
24 voice

T3
720 voice 100 Mbps

1,560 voice 1 Gbps
15,620 voice

23

Fiber Optic Attenuation

David Goff, Fiber Optic Reference Guide

24

Fiber

Wave Division Multiplexing (WDM)

• Use color / frequency to separate channels
• Course (CWDM) and Dense (DWDM) varieties
• Usually in the 1550 nm band

25

WDM Evolution
Toward 100 Tbps per fiber

David Goff, Fiber Optic Reference Guide

26

DWDM Progress
• Example DWDM Technology Deployment

– 1996, 8 channels, 2.4 Gbps each (19 Gbps)
– 2000, 40 channels, 10 Gbps each (400 Gbps)
– 2005, 80 channels, 40 Gbps each (3.2 Tbps)
– 2010, 320 channels, 160 Gbps each (51 Tbps)

• Cost is linear with # of channels
• ~2.5x cost for 4x bps within a TDM channel
• The return of wider channels (for higher rates)?
• A lot of fiber in the ground today will be obsolete

27

Network Speeds Over Time

100 kbps

100 Mbps

1970 1975 1980 1985 1990 1995 2000 2005
10 kbps

1 Mbps

10 Mbps

1 Gbps

10 Gbps

Ethernet

ARPANET / MILNET

FDDI

HIPPI-800 GigE

10 GigE

HIPPI-6400 / GSN

100 Ethernet

NSFNET

vBNS

~Computer I/O
requirements

T1

T3

OC3

OC12

OC48

HPCC NGI NITRD

ATM

IP

High Performance Networks in
the USA

29

Internet2

30

Internet2 Abilene Network

• Serves the Internet2 member institutions
• Built on Qwest fiber, Nortel optics, Juniper

routers
• History

– IOC on Feb 1999
– OC48 (2.4 Gbps) backbone 1999
– OC192 (10 Gbps) upgrade 2003
– Ends October 2007

31

Internet2 Abilene Network

32

National LambdaRail (NLR)

• Controls a large collection of national fiber
– 15,000 route miles, from Level3 and WilTel
– Cisco 15808 (up to 40 wavelengths) and 15454

(up to 32 wavelengths) switches
• Offers members multi layered services

– WaveNet – point to point 10GigE or OC192
– FrameNet – Ethernet, shared or private
– PacketNet – IPv4 and IPv6, CRS-1 routers

33

National LambdaRail Map

34

Projects on NLR

• NSF Extensible Terascale Facility (ETF)
• OptIPuter consortium
• DOE UltraScience Net (USN)
• Internet2 Hybrid Optical and Packet

Infrastructure (HOPI)

35

TeraGrid / ETF

36

UltraScience Net

37

HOPI Network

38

HOPI Topology

39

HOPI Node

40

Internet2 NewNet
• Abilene’s Qwest agreement ends October 2007
• NewNet will be built on

– Level3’s Dedicated Wave System (DWS)
• 10 x 10 Gbps initially
• Up to 80 x 40 Gbps or 80 x 100 Gbps (8 Tbps)

– Infinera optical switches
– Juniper routers

• Expect ~20 Regional Optical Networks (RONs) to
connect 10 Gbps IP + 10 Gbps optical

41Rick Summerhill, Internet2

Internet2 NewNet
Provisional Topology, June 2006

42

NASA Research and Engineering
Network (NREN)

43
DS-3

OC-12
OC-48

PYM

OC-3

NOF

HSJ

RIJ

WAE

DCN

DCN
DCN

DCN

DCN

DCN

DCN

DCN

Dugway

Monterey-NPS
Monterey-NRL-MRY China Lake

Edwards AFB

Point Mugu
Point Hueneme

Los Angeles AFB

San Diego
Yuma

Tucson

Ft Huachuca

Kirtland AFB

White Sands
Missile Range
(WSMR)

Brooks AFB

USAFA
Schriever AFB,JNIC

Offutt AFB

Minneapolis
AHPCRC

Champaign, IL
WPAFB

TARDEC-TCOM,Warren, MI

SMDC-ARC Huntsville

Maxwell AFB

Eglin, AFB Panama
City

Tyndall

Ft Rucker, AL
Ft Benning, GA

Redstone Arsenal

NAWCTSD-Orlando

AEDC
Arnold AFB

SPAWAR
Charleston, SC

Ft Knox

Research Triangle
Park, NC

Ft Monmouth, NJ
Lakehurst, NJ

Picatiny Arsenal

NUWC-Newport, RI

Natick, MA
Hanscomb, AFB

USMA
West Point

Hanover, NH

Watervliet, NY, Benet labs

Rome

Carlisle, PA

Pentagon

Ft Belvoir (NIPRnet)
DTRAHQ, Alexandria NSEC Indian Head

NSWC Dahlgren

DCN Newport News
J9 Suffolk

NH95
Dam Neck

Suffolk

NAWC-AD Pax River

USNA, Annapolis
NRL-DC

NGIX-East

WRAIR, Silver Spring

Arlington-MDA

ARL-APG, Aberdeen

ARL-Adelphi

NSWC Carderock,Bethesda
AMRID-FT Detrick

HPCMO

MAE-West

Starlight

U of Wash

UUNet

UUNet

UUNet

OC-12

ERDC
Vicksburg

NAVO
Stennis

NEO

Mesa, AFRL

WIT

RTO

HAY

AST

DNG

DCN

Hazelwood, MO

UUNet

NOR

CHT

WOR

NOF
To Atlanta

RIJ

WAE

PYM

NIPRnet

NIPRnet

DCN

PMRF
Barking Sands

NCTAMs

Pearl City

University
Of

Hawaii

(MHPCC)
Maui High
Performance
Computing
Center

To Seattle

OC-12

OC-12

LEGEND

NGIX College Park, MD

NIPRnet

OC-12

NIPRnet

NAP

UUNet = ISP Access (4)

= NAP Access (4)

= NIPRnet Access (3)

Backbone SDP Access

External Networks

Cox
Ring

MEJ

vbns

DCN = DREN
Core Node

= Node

Network Nodes

DNJ

ASRC
Fairbanks, AK

SEJ

Ft. Gordon, GAFt Sill

Ft Leavenworth

Ft Lee

Ft Bliss

Ft Leonard Wood

Ft Monroe
Arlington AFOSR

El Segundo

Albuquerque, ARA

Keyport

Redondo Beach

Huntsville MDA-GMD

Mesa,FCS

Hungtington Beach FCS

DNOC, Rockville

Sterling Height, FCS

Minneapolis, FCS

Hazelwood, FCS

Ft Bragg, NC

Beavercreek

Ft Hood

Kent, WA FCS

Vienna,FCS

Alexandria Atec

Quantico

=Service Delivery Points

=Local Connection

Ft Lewis

Santa Clara, FCS

Morro Bay

RAY

RAY

vbns =New Node

Crane

NOW

Connects to PYM via two
OC-48

Las Cruces
(WSC)

Nellis, AFB

Bethpage, NY
NYD

Houston, FCS

Seattle, FCS

OC-48

Vandenberg AFB

Philadelphia NSWCCD

Philadelphia FCS

Palmdale

J7

Albuquerque, FCS

OC-192

OC-3

Defense Research and Engineering Network (DREN)

44

45

Commercial Networks
The top ten networks defined by address space

Rank IP Space ASN Description
1 89,608,854 721 DISA CONUS
2 43,568,261 3356 Level 3 Communications, LLC
3 32,882,064 701 UUNET Technologies, Inc.
4 29,077,394 4134 No.31,Jin-rong Street
5 28,725,288 17676 APNIC ASN block
6 25,691,444 7018 AT&T WorldNet Services
7 23,882,363 174 Cogent Communications
8 23,775,293 7132 SBC Internet Services
9 22,987,395 3352 Internet Access Network of TDE
10 18,428,110 237 Merit Network Inc.

Source: www.fixedorbit.com, Sep 2006

46

Commercial Networks
The top ten networks defined by number of peers

Rank Peers ASN Description
1 2,402 701 UUNET Technologies, Inc.
2 2,025 7018 AT&T WorldNet Services
3 1,720 1239 Sprint
4 1,302 3356 Level 3 Communications, LLC
5 1,210 174 Cogent Communications
6 1,176 209 Qwest
7 739 3549 Global Crossing
8 715 4323 Time Warner Telecom, Inc.
9 701 6461 Abovenet Communications, Inc
10 655 7132 SBC Internet Services

Source: www.fixedorbit.com, Sep 2006

47

AS Core Visualization

www.caida.org/analysis/topology/as_core_network/

Apr 2005

48

Network References

• Abilene, abilene.internet2.edu
• DREN, www.hpcmo.hpc.mil/Htdocs/DREN
• ESnet, www.es.net
• NLR, www.nlr.net
• NREN, www.nren.nasa.gov
• vBNS+, www.vbns.net

Delay

a.k.a. Latency

50

Speed Limit

The speed of light is a constant

It seems slower every year

SPEED

LIMIT

186000
miles/s

51

Speed of Light in Media

• ~3.0x108 m/s in free space
• ~2.3x108 m/s in copper
• ~2.0x108 m/s in fiber = 200 km / ms

[100 km of distance = 1 ms of round trip time]

We gave up 1/3 of our speed to use fiber

52

Light Speed Delay in Fiber

10 ms

20 ms 30 ms 40 msActual rtt’s often 1.4 - 3.5x longer

53

OC3
155 Mbps

DS3
45 Mbps

High “Speed” Networks
Capacity

54

Packet Durations and Lengths
1500 Byte Packets in Fiber

Mbps pps sec/pkt length
56k 0.056 4.7 214 ms 42857 km
T1 1.544 129 7.8 ms 1554 km
Eth 10 833 1.2 ms 240 km
T3 45 3750 267 us 53 km
FEth 100 8333 120 us 24 km
OC3 155 13k 77 us 15 km
OC12 622 52k 19 us 3859 m
GigE 1000 83k 12 us 2400 m
OC48 2488 207k 4.8 us 965 m
10GigE 10000 833k 1.2 us 240 m

55

Observations on Packet Lengths

• A 56k packet could wrap around the earth!

• A 10GigE packet fits in the convention
center

56

Observations on Packet Lengths

• Each store and forward hop adds the packet
duration to the delay
– In the old days (< 10 Mbps) such hops

dominated delay
– Today (> 10 Mbps) store and forward delays on

WANs are minimal compared to propagation

57

Observations on Packet Lengths

• ATM cells (and TCP ACK packets) are
~1/30th as long, 30x as many per second
– One of the reasons we haven’t seen OC48 SAR

until recently (2002)
• Jumbo Frames (9000 bytes) are 6x longer,

1/6th as many per second

58

Router Queues

• The major source of variable delay
• Handle temporary inequalities between

arrival rate and output interface speed
• Small queues minimize delay variation
• Large queues minimize packet drop

Arriving Packets
sum of input rates

Departing Packets
output line rate

59

3 2

Passive Queue Management (PQM)

When full, choose a packet to drop
1. Tail-Drop – arriving packet
2. Drop-From-Front – packet at front of queue
3. Push-Out – packet at back of queue
4. Random-Drop – pick any packet

Arriving Packets
sum of input rates

Departing Packets
output line rate1

60

Active Queue Management (AQM)

• Addresses lock-out and full queue problems
• Incoming packet drop probability is a function of

average queue length
• Random Early Detection (RED)

– Recommended Practice, RFC 2309, Apr 98
– Minth, Maxth, Mindrop, Maxdrop, w
– www.icir.org/floyd/red.html

Arriving Packets
sum of input rates

Departing Packets
output line rate

MinthMaxth

61

Measuring Delay: Ping
$ ping –s 56 cisco.com
PING cisco.com (198.133.219.25) from 63.196.71.246 : 56(84) bytes of data.
64 bytes from www.cisco.com (198.133.219.25): icmp_seq=1 ttl=241 time=25.6 ms
64 bytes from www.cisco.com (198.133.219.25): icmp_seq=2 ttl=241 time=25.5 ms
64 bytes from www.cisco.com (198.133.219.25): icmp_seq=3 ttl=241 time=25.1 ms
64 bytes from www.cisco.com (198.133.219.25): icmp_seq=4 ttl=241 time=26.1 ms
64 bytes from www.cisco.com (198.133.219.25): icmp_seq=5 ttl=241 time=25.0 ms
64 bytes from www.cisco.com (198.133.219.25): icmp_seq=6 ttl=241 time=25.8 ms
64 bytes from www.cisco.com (198.133.219.25): icmp_seq=8 ttl=241 time=25.4 ms
64 bytes from www.cisco.com (198.133.219.25): icmp_seq=9 ttl=241 time=25.1 ms
64 bytes from www.cisco.com (198.133.219.25): icmp_seq=10 ttl=241 time=26.2 ms

--- cisco.com ping statistics ---
10 packets transmitted, 9 received, 10% loss, time 9082ms
rtt min/avg/max/mdev = 25.053/25.585/26.229/0.455 ms

62

Ping Observations

• Ping packet = 20 bytes IP + 8 bytes ICMP
+ “user data” (first 8 bytes = timestamp)

• Default = 56 user bytes = 64 byte IP
payload = 84 total bytes

• Small pings (-s 8 = 36 bytes) take less time
than large pings (-s 1472 = 1500 bytes)

IP 20 User Data 0+ bytes8

ICMP

ts

63

Ping Observations

• TTL = 241 indicates 255-241 = 14 hops
• Delay variation indicates congestion or

system load
• Not good at measuring small loss

– An HPC network should show zero ping loss
• Depends on ICMP ECHO which is

sometimes blocked for “security”

64

Delay Changes

• Delay jumping between two distinct values
• Does not show up in traceroute as a route change
• Layer 2 problem: SONET protect failover

65

Delay Creep
When layer 2 “heals” itself

May 4th: 69 msec min May 5th: 138 msec min

May 7th: 168 msec min May 9th: 168 to 68 msec drop

VC Reset

66

One-Way Active Measurement
Protocol (OWAMP)

http://e2epi.internet2.edu/owamp

$ owping damp-arl

--- owping statistics from [sd.wareonearth.com]:33529 to [damp-arl-ge]:37545 ---
SID: 8a121503c4ab3560b8ca3e7df7886da8
100 packets transmitted, 0 packets lost (0.0% loss)
one-way delay min/median = 43.473/45.152 ms (precision 0.0018921 s)
no reordering

--- owping statistics from [damp-arl-ge]:37546 to [sd.wareonearth.com]:33530 ---
SID: 3fc447f6c4ab3560c54b599ab1a6185e
100 packets transmitted, 0 packets lost (0.0% loss)
one-way delay min/median = 48.429/48.880 ms (precision 0.0018921 s)
1-reordering = 4.040404%
no 2-reordering

67

Surveyor

• Showed that one-way is interesting

68

Real-Time Delay

69

Planet DREN

Routes

The path taken by your packets

71

How Routers Choose Routes

• Within a network
– Smallest number of hops
– Highest bandwidth paths
– Usually ignore latency and utilization

• From one network to another
– Often “hot potato” routing, i.e. pass to the other

network ASAP

72

IP Routing Hierarchy

Autonomous System

Interior Gateway Protocol (IGP)

OSPF, EIGRP, IS-IS

Autonomous System

Interior Gateway Protocol (IGP)

OSPF, EIGRP, IS-IS

Exterior
Gateway
Protocol

BGP

73

“Scenic” Routes

74

Asymmetric Routes

75

Level3 Dark Fiber

76

Qwest Fiber Routes

Qwest Fiber Routes

77

NGI Architecture

78

Path Performance: Latency vs. Bandwidth
The highest bandwidth path is not always the highest throughput path!

vBNS

DREN
SprintNAP, NJSDSC, CA

Host A
Perryman, MD

Host B
Aberdeen, MD

OC3 Path DS3 Path

• Host A&B are 15 miles apart
• DS3 path is ~250 miles
• OC3 path is ~6000 miles

The network chose the OC3
path with 24x the rtt, 80x BDP

79

A Modern Traceroute

• ftp://ftp.login.com/pub/software/traceroute/
• Supports

– MTU discovery (-M)
– Report ASNs (-A)
– Registered owners (-O)
– Set IP TOS field (-t)
– Microsecond timestamps (-u)
– Set IP protocol (-I)

80

Traceroute Example
[phil@damp-ssc phil]$ traceroute -A mit.edu
traceroute to mit.edu (18.7.22.69), 64 hops max, 40 byte packets
1 ge-0-1-0.sandiego.dren.net (138.18.190.1) [AS668] 0 ms 0 ms 0 ms
2 so-0-0-0.ngixeast.dren.net (138.18.1.55) [AS668] 76 ms 75 ms 76 ms
3 Abilene-peer.ngixeast.dren.net (138.18.47.34) [AS668] 76 ms 77 ms 76 ms
4 nycmng-washng.abilene.ucaid.edu (198.32.8.84) [<NONE>] 80 ms 88 ms 80 ms
5 ATM10-420-OC12-GIGAPOPNE.nox.org (192.5.89.9) [<NONE>] 87 ms 86 ms 85 ms
6 192.5.89.90 (192.5.89.90) [<NONE>] 85 ms 86 ms 104 ms
7 W92-RTR-1-BACKBONE.MIT.EDU (18.168.0.25) [AS3] 85 ms 85 ms 85 ms
8 WEB.MIT.EDU (18.7.22.69) [AS3] 86 ms 86 ms 85 ms

• DREN (AS668) to Abilene to MIT (AS3)
• ASN “NONE” results from private/unadvertised address space
• Hop 1 to 2 was over an (invisible) MPLS path

81

How Traceroute Works
• Sends UDP packets to ports (-p) 33434 and up,

TTL of 1 to 30
• Each router hop decrements the TTL
• If the TTL=0, that node returns an ICMP TTL

Expired
• The destination host returns an ICMP Port

Unreachable
• http://www.caida.org/publications/animations/

82

Traceroute Observations

• Shows the return interface addresses of the
forwarding path

• You can’t see hops through switches or over
tunnels (e.g. ATM VC’s, GRE, MPLS)

• The required ICMP replies are sometimes
blocked for “security”, or not generated, or
sent without resetting the TTL

83

Matt’s Traceroute
www.bitwizard.nl/mtr/

Matt's traceroute [v0.41]
damp-ssc.spawar.navy.mil Sun Apr 23 23:29:51 2000
Keys: D - Display mode R - Restart statistics Q - Quit

Packets Pings
Hostname %Loss Rcv Snt Last Best Avg Worst
1. taco2-fe0.nci.net 0% 24 24 0 0 0 1
2. nccosc-bgp.att-disc.net 0% 24 24 1 1 1 6
3. pennsbr-aip.att-disc.net 0% 24 24 84 84 84 86
4. sprint-nap.vbns.net 0% 24 24 84 84 84 86
5. cs-hssi1-0.pym.vbns.net 0% 23 24 89 88 152 407
6. jn1-at1-0-0-0.pym.vbns.net 0% 23 23 88 88 88 90
7. jn1-at1-0-0-13.nor.vbns.net 0% 23 23 88 88 88 90
8. jn1-so5-0-0-0.dng.vbns.net 0% 23 23 89 88 91 116
9. jn1-so5-0-0-0.dnj.vbns.net 0% 23 23 112 111 112 113

10. jn1-so4-0-0-0.hay.vbns.net 0% 23 23 135 134 135 135
11. jn1-so0-0-0-0.rto.vbns.net 0% 23 23 147 147 147 147
12. 192.12.207.22 5% 22 23 98 98 113 291
13. pinot.sdsc.edu 0% 23 23 152 152 152 156
14. ipn.caida.org 0% 23 23 152 152 152 160

84

GTrace – Graphical Traceroute
www.caida.org/tools/visualization/gtrace/

85

tcptraceroute

• http://michael.toren.net/code/tcptraceroute/
• Useful when ICMP is blocked

– But still depends on TTL expired replies
• Can select the TCP port number

– Helps locate firewall or ACL blocks
– Defaults to port 80 (http)

86

Routing vs. Switching
• IP routing requires a longest prefix match

– Harder than switching, but now wire speed
– Inspired IP switching / MPLS

• Switches have gained features
– Some even route

• Simplicity is good
– Used switched infrastructure where you can,

routers where you need better separation or
control

87

Multi-Protocol Label Switching (MPLS)

• Adds switched (layer 2) paths below IP
– Useful for traffic engineering, VPN’s, QoS

control, high speed switching
• IP packets get wrapped in MPLS frames

and “labeled”
• MPLS routers switch the packets along

Label Switched Paths (LSP’s)
• Being generalized for optical switching

(GMPLS)

Packet Sizes

MTU

89

Maximum Transmission Unit (MTU)

• Maximum packet size that can be sent as
one unit (no fragmentation)

• Usually “IP MTU” which is the largest IP
datagram including the IP header
– Shown with ifconfig on Unix/Linux

• Sometimes a layer 2 MTU
– IP MTU 1500 = Ethernet MTU 1518 (or 1514,

or 1522)

90

IP MTU Sizes
ReferenceMaximumDefault

RFC 265264K – 4GB65280IP on FC

RFC 261564K - Inf4470/9180POS

RFC 222564K9180IP on ATM

RFC 118845004352IP on FDDI

4470HSSI

RFC 246064K – 4GB1280IPv6

64K576IPv4

91

Ethernet Jumbo Frames

• Non-standard Ethernet extension
– Usually 9000 bytes (IP MTU)
– Sometimes anything over 1500

• Usually only used with 1GigE and above
• Requires separate LANs or VLANs to

accommodate non-jumbo equipment
• http://sd.wareonearth.com/~phil/jumbo.html

92

Reasons for Jumbo

• Reduce system and network overhead
• Handle 8KB NFS or SAN packets
• Improve TCP performance!

– Greater throughput
– Greater loss tolerance
– Reduced router queue loads

93

Vendor Jumbo Support
• MTU 9000 interoperability demonstrated:

– Allied Telesyn, Avaya, Cisco, Extreme, Foundry, NEC,
Nortel

• Juniper = 9178 (9192 – 14)
• Cisco (5000/6000) = 9216
• Foundry JetCore 1 & 10 GbE = 14000
• NetGear GA621 = 16728
• http://darkwing.uoregon.edu/~joe/jumbo-clean-gear.html

94

Path MTU (PMTU)

• Minimum MTU of all hops in a path
• Hosts can do Path MTU Discovery to find it

– Depends on ICMP replies
• Without PMTU Discovery hosts should

assume PMTU is only 576 bytes
– Some hosts falsely assume 1500!

95

Check the MTU

[phil@damp-mhpcc phil]$ tracepath damp-rome
1?: [LOCALHOST] pmtu 9000
1: ge-0_1_0.mhpcc.dren.net (138.18.203.1) asymm 2 1.144ms
2: so-1_0_0.uhm.dren.net (138.18.4.49) asymm 3 3.225ms
3: so-0_2_0.seattle-m20.dren.net (138.18.4.52) asymm 4 69.395ms
4: ge-0_1_0.seattle.dren.net (138.18.194.33) asymm 5 69.597ms
5: t3-0_0_0.rome.dren.net (138.18.1.11) asymm 6 163.504ms
6: t3-0_0_0.rome.dren.net (138.18.1.11) 162.976ms pmtu 1500
7: damp-rome-fe (138.18.25.6) asymm 6 158.981ms reached

Resume: pmtu 1500 hops 7 back 6

96

Using Ping to Check the MTU

damp-navo$ ping -s 8000 -d -v -M do damp-asc2
PING damp-asc2-ge (138.18.22.5) from 204.222.177.220 : 8000(8028) bytes of
data.
From so-0_0_0.wpafb.dren.net (138.18.1.5) icmp_seq=1 Frag needed and DF
set (mtu = 4352)
8008 bytes from damp-asc2-ge (138.18.22.5): icmp_seq=1 ttl=60 time=47.6 ms
ping: local error: Message too long, mtu=4352

97

Things You Can Do

• Use only large MTU interfaces/routers/links
– Gigabit Ethernet with Jumbo Frames (9000)

– Packet over SONET (POS) (4470, 9000+)

– ATM CLIP (9180)

• Never reduce the MTU (or bandwidth) on the path
between each/every host and the WAN

• Make sure your TCP uses Path MTU Discovery

Bandwidth

and throughput

99

Hops of Different Bandwidth

• The “Narrow Link” has the lowest bandwidth
• The “Tight Link” has the least Available bandwidth
• Queues can form wherever available bandwidth decreases
• A queue buildup is most likely in front of the Tight Link

45Mbps 10Mbps 45Mbps100Mbps

100

Throughput Limit

• throughput <= available bandwidth
(“tight link” with the minimum unused bandwidth)

– A high performance network should be lightly
loaded (<50%)

– A loaded high speed network is no better to the
end user than a lightly loaded slow one

101

Bandwidth Determination
• Ask the routers/switches

– SNMP
– RMON / NetFlow / sFlow

• Passive Measurement
– tcpdump
– OCxmon

• Active Measurement
– Light weight tests
– Full bandwidth tests

102

SNMP

• Simple Network Monitoring Protocol
– Version 1: RFC 1155-1157 (1990)
– Version 2c: RFC 1901-1908 (1996)
– Version 3: RFC 2571-2574 (1999)

• Several Version 2 variations
– “2c” added community strings

• Router / Switch statistics and control

103

Net-SNMP

• Net-SNMP – Open Source project
– Was UCD-SNMP

• Library and utilities
• http://www.net-snmp.org/

104

SNMP MIBs

• Management Information Base (MIB)
• Defines variables that can be read / set
• Many MIBs exist, both standard and vendor

specific
• Tree structure hierarchy
• Numerical strings (OID’s) with text

representations

105

Example MIB Variables

$ snmptranslate -Of SNMPv2-MIB::sysUpTime.0
.iso.org.dod.internet.mgmt.mib-
2.system.sysUpTime.0

$ snmptranslate -On SNMPv2-MIB::sysUpTime.0
.1.3.6.1.2.1.1.3.0

$ snmptranslate -On IF-MIB::ifHCInOctets.32
.1.3.6.1.2.1.31.1.1.1.6.32

$ snmptranslate -On IF-MIB::ifHCOutOctets.32
.1.3.6.1.2.1.31.1.1.1.10.32

106

Net-SNMP Example
$ snmpget -v 2c -c public router.dren.net system.sysUpTime.0
SNMPv2-MIB::sysUpTime.0 = Time ticks: (1407699551) 162 days, 22:16:35.51

$ snmpwalk -v 2c -c public router.dren.net IF-MIB::ifXTable
IF-MIB::ifName.1 = STRING: fxp0
IF-MIB::ifName.2 = STRING: fxp1
…
IF-MIB::ifHCInOctets.2 = Counter64: 4049716647
IF-MIB::ifHCOutOctets.2 = Counter64: 3264374754
IF-MIB::ifHighSpeed.2 = Gauge32: 100
IF-MIB::ifAlias.2 = STRING: Router 1 LAN
…

107

SNMP Counter Wrap

468 years10 Gbps64

3.4 sec10 Gbps32

34 sec1 Gbps32

5.7 min100 Mbps32

57 min10 Mbps32

Wrap TimeData RateCounter Bits

108

SNMP Resolution

• Juniper caches interface statistics for five
seconds

• Reads provide new data only if cache > 5
seconds old

• No timestamps on the data

109

Real-Time DREN Traffic
Five second snapshots of DREN traffic

110

MRTG

• www.mrtg.org
• Extremely popular network monitoring tool
• Most common display:

– Five minute average link utilizations
– Green into interface
– Blue out of interface

111

MRTG Example

Abilene, Indianapolis to Kansas City, OC48 link, 7 October 2002

112

RRDtool

• Round Robin Database Tool
• Reimplementation of MRTG’s backend

– Generalized data storage, retrieval, graphing
– Many front ends available, including MRTG

• www.rrdtool.org

113

Abilene Weather Map

http://weathermap.grnoc.iu.edu/abilene_jpg.html

114

Is SNMP Enough?

• SNMP/MRTG shows you how much traffic
• NetFlow and sFlow show you the kinds of

traffic and where it is coming from and
going to

115

What is a Flow?

• A collection of related packets
• Based on selection criteria (the key), examples:

– Src/dst address, prefix, or ASN
– Src/dst port
– Protocol
– Type of Service (TOS)
– Input Interface

• Can be bi-directional or unidirectional

116

Tcpdump example
Host100$ tcpdump -w dump.out -s 68 host 192.168.0.200
tcpdump: listening on eth1

Host100$ ssh 192.168.0.200 w
7:54pm up 78 days, 7:30, 1 user, load average: 0.01, 0.04, 0.01

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
phil :0 - 25Sep05 ? 0.00s ? -

36 packets received by filter
0 packets dropped by kernel

117

Tcpdump output
$ tcpdump -n -q -r dump.out
18:37:33.148979 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 0 (DF) S
18:37:33.149309 192.168.0.200.ssh > 192.168.0.100.60005: tcp 0 (DF) S ack
18:37:33.149331 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 0 (DF) ack
18:37:33.150783 192.168.0.200.ssh > 192.168.0.100.60005: tcp 22 (DF)
18:37:33.150959 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 0 (DF)
18:37:33.151020 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 22 (DF)
18:37:33.151384 192.168.0.200.ssh > 192.168.0.100.60005: tcp 0 (DF)
18:37:33.151397 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 536 (DF)
18:37:33.151738 192.168.0.200.ssh > 192.168.0.100.60005: tcp 0 (DF)
18:37:33.152327 192.168.0.200.ssh > 192.168.0.100.60005: tcp 544 (DF)
18:37:33.152700 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 24 (DF)
18:37:33.155258 192.168.0.200.ssh > 192.168.0.100.60005: tcp 424 (DF)
18:37:33.177305 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 416 (DF)
18:37:33.208861 192.168.0.200.ssh > 192.168.0.100.60005: tcp 736 (DF)
18:37:33.238156 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 16 (DF)
18:37:33.277504 192.168.0.200.ssh > 192.168.0.100.60005: tcp 0 (DF)
18:37:33.277536 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 48 (DF)
18:37:33.277831 192.168.0.200.ssh > 192.168.0.100.60005: tcp 0 (DF)
18:37:33.277832 192.168.0.200.ssh > 192.168.0.100.60005: tcp 48 (DF)
18:37:33.277918 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 64 (DF)
18:37:33.278300 192.168.0.200.ssh > 192.168.0.100.60005: tcp 80 (DF)
18:37:33.278344 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 240 (DF)
18:37:33.280619 192.168.0.200.ssh > 192.168.0.100.60005: tcp 192 (DF)
18:37:33.286025 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 384 (DF)
18:37:33.288273 192.168.0.200.ssh > 192.168.0.100.60005: tcp 32 (DF)
18:37:33.288377 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 64 (DF)
18:37:33.290148 192.168.0.200.ssh > 192.168.0.100.60005: tcp 48 (DF)
18:37:33.290204 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 48 (DF) [tos 0x8]
18:37:33.293550 192.168.0.200.ssh > 192.168.0.100.60005: tcp 48 (DF) [tos 0x8]
18:37:33.333059 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 0 (DF) [tos 0x8]
18:37:33.333314 192.168.0.200.ssh > 192.168.0.100.60005: tcp 384 (DF) [tos 0x8]
18:37:33.333336 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 0 (DF) [tos 0x8]
18:37:33.333892 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 32 (DF) [tos 0x8]
18:37:33.333932 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 0 (DF) [tos 0x8] F
18:37:33.336248 192.168.0.200.ssh > 192.168.0.100.60005: tcp 0 (DF) [tos 0x8] F ack
18:37:33.336265 192.168.0.100.60005 > 192.168.0.200.ssh: tcp 0 (DF) [tos 0x8] ack

118

Example Flows

255817600510022200

189419222006005100

BytesPacketsDst
Port

Dst
Addr

Src
Port

Src
Addr

Key: Unidirectional IP, portKey: Unidirectional IP, port

119

What Is NetFlow?

• Originally a Cisco switching method to accelerate
packet forwarding (1997)

• Routers build switching/accounting records for each
“flow”

• A flow is all packets with matching:
– src/dst address, src/dst port, IP protocol, TOS, input

interface
• When a flow ends or times out, its accounting

information can be exported in a flow record

120

NetFlow

• Version 5 and 9 formats common today
– www.cisco.com/go/netflow
– www.ietf.org/rfc/rfc3954.txt

• Called “cflow” on Juniper
• Many tools

– flow-tools, www.splintered.net/sw/flow-tools/
– cflowd, www.caida.org/tools/measurement/cflowd/
– FlowScan, net.doit.wisc.edu/~plonka/FlowScan/

121

sFlow
• RFC 3176, Sep 2001
• Switch or router level agent

– Controlled by SNMP
• Statistical flow samples

– Flow is one ingress port to one egress port(s)
– Up to 256 packet header bytes, or summary

• Periodic counter statistics
– typical 20-120 sec interval

• www.sflow.org, www.ntop.org

122

NetFlow / sFlow Comparison

Raw packet dataDefined fields only
Layer 2 and aboveIP only

Cheaper probesMore tools available

Usually sampledOften full
Post processing requiredStart/Stop times
LightweightHeavyweight
StatelessStateful
sFlowNetFlow

123

Uses of NetFlow / sFlow Data

• Accounting / billing
– Who is using the network?

• Security
– Detection/traceback of scans, (D)DoS attacks,

infected hosts, unusual activity, forensics
• Engineering

– Routing, peering, traffic mix, ToS, applications

124

Relationships

Packet Details
(pcap)

Routing Details
(BGP)

Interface Details
(SNMP)

MRTG
OpenView

Tcpdump
OCxmon

sFlow NetFlow

PeakFlow
InMon

RouteViews
Periscope

Looking
glass

Bandwidth Estimation – Single Packet

• Larger packets take
longer

• Delay from intercept

• Bandwidth from slope

From A. Downey

126

Bandwidth Estimation – Multi Packet

• Packet pairs or trains are sent
• The slower link causes packets to spread
• The packet spread indicates the bandwidth

987 6 5 4 3 2 1

127

Bandwidth Measurement Tools

• pathchar – Van Jacobson, LBL
– ftp://ftp.ee.lbl.gov/pathchar/

• clink – Allen Downey, Wellesley College
– http://rocky.wellesley.edu/downey/clink/

• pchar – Bruce A. Mah, Sandia/Cisco
– http://www.employees.org/~bmah/Software/pchar/

128

Bandwidth Measurement Tools

• pipechar - Jin Guojun, LBL
– http://www.didc.lbl.gov/pipechar/

• nettimer - Kevin Lai, Stanford University
– http://gunpowder.stanford.edu/~laik/projects/nettimer/

• pathrate/pathload - Constantinos Dovrolis,
Georgia Tech
– http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/bwmeter.html

129

abing
• http://www-iepm.slac.stanford.edu/tools/abing/
• Sends 20 pairs (40 packets) of 1450 byte UDP to a

reflector on port 8176, estimates (in ~1 second):
– ABw: Available Bandwidth
– Xtr: Cross traffic
– DBC: Dominating Bottleneck Capacity

damp-ssc$ abing -d damp-arl
1095727946 T: 192.168.1.2 ABw-Xtr-DBC: 541.1 104.1 645.3 ABW: 541.1 Mbps

RTT: 69.042 69.110 69.322 ms 20 20
1095727946 F: 192.168.1.2 ABw-Xtr-DBC: 364.5 200.5 564.9 ABW: 364.5 Mbps

RTT: 69.042 69.110 69.322 ms 20 20

130

Bandwidth*Delay Product

• The number of bytes in flight to fill the
entire path

• Includes data in queues if they contributed
to the delay

• Example
– 100 Mbps path
– ping shows a 75 ms rtt
– BDP = 100 * 0.075 = 7.5 million bits (916 KB)

Windows

Flow/rate control and error recovery

132

Windows

• Windows control the amount of data that is
allowed to be “in flight” in the network

• Maximum throughput is one window full
per round trip time

• The sender, receiver, and the network each
determine a different window size

133

Window Sizes 1,2,3

Data packets go one way
ACK packets come back

134

MPing – A Windowed Ping
www.psc.edu/~mathis/wping/

• Excellent tool to view the packet forwarding and
loss properties of a path under varying load!

• Sends windows full of ICMP Echo or UDP
packets

• Treats ICMP Echo_Reply or Port_Unreachable
packets as “ACKs”

• Make sure destination responds well to ICMP
• Consumes a lot of resources: use with care

135

How MPing Works

5 4 3 2 1 bad things happen

Example: window size = 5
transmit

1 2 5
comes back

6recv 1 (can send ack 1 + win 5 = 6)

7recv 2 (can send ack 2 + win 5 = 7)

10recv 5 (can send ack 5 + win 5 = 10)

11recv 6 (can send ack 6 + win 5 = 11)

9 8

136

Rtt window not yet full
Slope = 1 / rtt

Stable queueing region Tail-drop behavior

MPing on a “Normal” Path

137

Stable data rate
3600*1000*8 = 29 Mbps

Queue size
(280-120)*1000 = 160 KB

Effective BW*Delay Product
120*1000 = 120 KB

Packet Loss
1 - 3600/4800 = 25%

Rtt = 120/3600 = 33 msec

MPing on a “Normal” Path

138

Some MPing Results #1

RTT is increasing as load
increases

Slow packet processing?

Fairly normal behavior
Discarded packets are costing

some performance loss

139

Some MPing Results #2

Very little stable queueing
Insufficient memory?
Spikes from some periodic

event (cache cleaner?)

Discarding packets comes at
some cost to performance

Error logging?

140

Some MPing Results #3

Oscillations with little loss
Rate shaping?

Decreasing performance with
increasing queue length

Typical of Unix boxes with
poor queue insertion

141

Some MPing Results #4

Fairly constant packet loss,
even under light load

Major packet loss, ~7/8 or 88%
Hump at 50 may be duplex problem

Both turned out to be an auto-negotiation duplex problem
Setting to static full-duplex fixed these!

142

Ethernet Duplex Problems
An Internet Epidemic!

• Ethernet “auto-negotiation” can select the
speed and duplex of a connected pair

• If only one end is doing it:
– It can get the speed right
– but it will assume half-duplex

• Mismatch loss only shows up under load
– Can’t see it with ping

143

Windows and TCP Throughput

• TCP Throughput is at best one window per
round trip time (window/rtt)

• The maximum TCP window of the
receiving or sending host is the most
common limiter of performance

• Examples
– 8 KB window / 87 msec ping time = 753 Kbps
– 64 KB window / 14 msec rtt = 37 Mbps

144

Maximum TCP/IP Data Rate
With 64KB window

45Mbps

100Mbps

622Mbps

145

Receive Windows for 1 Gbps

1 MB

3 MB 4 MB 5 MB
64KB limit is 32 miles 2 MB

146

Observed Receiver Window Sizes

• ATM traffic from the Pittsburgh Gigapop
• 50% had windows < 20 KB

– These are obsolete systems!
• 20% had 64 KB windows

– Limited to ~ 8 Mbps coast-to-coast
• ~9% are assumed to be using window scale

M. Mathis, PSC, 2002

TCP

The Internet’s transport

148

Important Points About TCP

• TCP is adaptive
• It is constantly trying to go faster
• It slows down when it detects a loss

• How much it sends is controlled by windows
• When it sends is controlled by received ACK’s

(or timeouts)

149

TCP Throughput vs. Time
(Maryland to California)

150

The Three TCP Windows

Socket buffer Receive windowcwnd

Sender Receiver

The smallest of these three will limit throughput

Congestion window

Writing App Reading App

151

TCP Receive Window
• A flow control mechanism
• The amount of data the receiver is ready to receive

– Updated with each ACK

• Loosely set by receive socket buffer size
• Application has to drain the buffer fast enough
• System has to wait for missing or out of order data

(reassembly queue)

152

Sender Socket Buffers

• Must hold two round trip times of data
– One set for the current round trip time
– One set for possible retransmits from the last

round trip time (retransmit queue)
• A system maximum often limits size
• The application must write data quickly

enough

153

TCP Congestion Window (cwnd)
• Flow control, calculated by sender, based on

observations of the data transfer (loss, rtt, etc.)
– cwnd gets larger after every new ACK
– cwnd get smaller when loss is detected

• cwnd amounts to TCP’s estimate of the available
bandwidth at any given time

• In the old days, there was none
– TCP would send a full receive window in one round

trip time

154

Two Modes of TCP Congestion Control

• TCP can operate cwnd in two modes
– Slow-start

• cwnd increases exponentially

– Congestion-Avoidance (“steady state”)
• cwnd increases linearly

155

Cwnd During Slow Start

• cwnd increased by one for every new ACK
• cwnd doubles every round trip time (exponential)
• cwnd is reset to zero after a loss

156

Congestion Avoidance (AIMD)

• Additive Increase, Multiplicative Decrease
– of cwnd, the congestion window

• The core of TCP’s congestion avoidance phase, or
“steady state”
– Standard increase = +1.0 MSS per loss free rtt
– Standard decrease = *0.5 (i.e. halve cwnd on loss)

• Avoids congestion collapse
• Promotes fairness among flows

157

Slow Start and Congestion
Avoidance Together

158

Iperf : TCP California to Ohio
damp-ssc2$ iperf -c damp-asc2 -p56117 -w750k -t20 -i1 -fm
--
Client connecting to damp-asc2, TCP port 56117
TCP window size: 1.5 MByte (WARNING: requested 0.7 MByte)
--
[3] local 192.168.25.74 port 35857 connected with 192.168.244.240 port 56117
[ID] Interval Transfer Bandwidth
[3] 0.0- 1.0 sec 1.7 MBytes 14.2 Mbits/sec
[3] 1.0- 2.3 sec 1.5 MBytes 9.5 Mbits/sec
[3] 2.3- 3.2 sec 1.2 MBytes 11.2 Mbits/sec
[3] 3.2- 4.1 sec 1.2 MBytes 12.2 Mbits/sec
[3] 4.1- 5.1 sec 1.6 MBytes 12.5 Mbits/sec
[3] 5.1- 6.1 sec 1.6 MBytes 13.6 Mbits/sec
[3] 6.1- 7.0 sec 1.6 MBytes 14.6 Mbits/sec
[3] 7.0- 8.2 sec 2.0 MBytes 14.7 Mbits/sec
[3] 8.2- 9.1 sec 1.6 MBytes 15.4 Mbits/sec
[3] 9.1-10.1 sec 2.0 MBytes 16.7 Mbits/sec
[3] 10.1-11.1 sec 2.0 MBytes 17.0 Mbits/sec
[3] 11.1-12.0 sec 2.0 MBytes 18.5 Mbits/sec
[3] 12.0-13.1 sec 2.4 MBytes 18.8 Mbits/sec
[3] 13.1-14.1 sec 2.4 MBytes 19.1 Mbits/sec
[3] 14.1-15.1 sec 2.4 MBytes 20.8 Mbits/sec
[3] 15.1-16.1 sec 2.4 MBytes 20.6 Mbits/sec
[3] 16.1-17.0 sec 2.4 MBytes 22.0 Mbits/sec
[3] 17.0-18.1 sec 2.8 MBytes 22.2 Mbits/sec
[3] 18.1-19.1 sec 1.6 MBytes 13.6 Mbits/sec
[3] 19.1-20.1 sec 1.6 MBytes 12.3 Mbits/sec
[ID] Interval Transfer Bandwidth
[3] 0.0-20.6 sec 38.2 MBytes 15.5 Mbits/sec

82 msec rtt

159

TCP Examples from Maui HI

98 ms rtt

153 ms rtt

8 ms rtt

160

TCP Acceleration (MSS/rtt2)
(Congestion avoidance rate increase, MSS = 1448)

3450.29200

86.41.16100

21.64.650

3.452920
0.86411610

0.2164635

0-100Mbps (sec)Mbps/srtt (msec)

161

Bandwidth*Delay Product and TCP

• TCP needs a receive window (rwin) equal
to or greater than the BW*Delay product to
achieve maximum throughput

• TCP needs sender side socket buffers of
2*BW*Delay to recover from errors

• You need to send about 3*BW*Delay bytes
for TCP to reach maximum speed

162

Delayed ACKs

• TCP receivers send ACK’s:
– after every second segment
– after a delayed ACK timeout
– on every segment after a loss (missing segment)

• A new segment sets the delayed ACK timer
– Typically 0-200 msec

• A second segment (or timeout) triggers an ACK
and clears the delayed ACK timer

163

ACK Clocking

• A queue forms in front of a slower speed link
• The slower link causes packets to spread
• The spread packets result in spread ACK’s
• The spread ACK’s end up clocking the

source packets at the slower link rate

987 6 5 4 3 2 1

164

Detecting Loss

• Packets get discarded when queues are full
(or nearly full)

• Duplicate ACK’s get sent after missing or
out of order packets

• Most TCP’s retransmit after the third
duplicate ACK (“triple duplicate ACK”)
– Windows XP now uses 2nd dup ACK

165

TCP Throughput Model
Once recv window size and available bandwidth aren’t the limit

~0.7 * Max Segment Size (MSS)
Rate =

Round Trip Time * sqrt[pkt_loss]
M. Mathis, et al.

• Double the MTU, double the throughput
• Halve the latency, double the throughput

– shortest path matters
• Halve the loss rate, 40% higher throughput
• www.psc.edu/networking/papers/model_abstract.html

166

Example Mathis Predictions

167

Round Trip Time (RTT)
rate = 0.7 * MSS / (rtt * sqrt(p))

• If we could halve the delay we could double
throughput!

• Most delay is caused by speed of light in
fiber (~200 km/msec)

• “Scenic routing” and fiber paths raise the
minimum

• Congestion (queueing) adds delay

168

Max Segment Size (MSS)
rate = 0.7 * MSS / (rtt * sqrt(p))

• MSS = MTU – packet headers
• Most often, MSS = 1448 or 1460
• Jumbo frame => ~6x throughput increase
• The Abilene and DREN WANs support

MTU 9000 everywhere
– Most sites still have a lot of work to do

169

DREN MTU Increase

• IP Maximum Transmission Unit (MTU) on
the DREN WAN is now 9146 bytes

• After much debate, exactly 9000 is being
used to the sites with GigE interfaces
– Sites choose 1500, 4470, or 9000; others by

exception
• Sites are encouraged to support 9000 on

their GigE infrastructures

170

Impact of Jumbo, into Ohio
Jumbo enabled 23 July 2003

171

Impact of Jumbo, San Diego to DC
Jumbo enabled 17 July 2003

172

Packet Loss (p)
rate = 0.7 * MSS / (rtt * sqrt(p))

• Loss dominates throughput !
• At least 6 orders of magnitude observed on

the Internet
• 100 Mbps throughput requires O(10-6)
• 1 Gbps throughput requires O(10-8)

173

Loss Limits for 1 Gbps

7x10-7

2x10-7 7x10-8 4x10-8

MSS = 1460

174

Specifying Loss

• TCP loss limits for 1 Gbps across country
are O(10-8), i.e. 0.000001% packet loss
– About 1 “ping” packet every three years
– Systems like AMP would never show loss
– Try to get 10-8 in writing from a provider!
– Most providers won’t guarantee < 0.01%

175

Specifying Throughput

• Require the provider to demonstrate TCP
throughput
– DREN contract requires ½ line rate TCP flow

sustained for 10 minutes cross country (e.g.
~300 Mbps on an OC12)

• A low loss requirement comes with this!

176

Concerns About Bit Errors

• Bit Error Rate (BER) specs for networking
interfaces/circuits may not be low enough
– E.g. 10-12 BER => 10-8 packet ER (1500 bytes)
– 10 hops => 10-7 packet drop rate

177

Example Bit Error Rate Specs

• Hard Disk, 10-14

– One error in 10 TB
• SONET Equipment, 10-12

• SONET Circuits, 10-10

• 1000Base-T, 10-10

– One bit error every 10 seconds at line rate
• Copper T1, 10-6

178

Is 10-8 Packet Loss Reasonable?

• Requires a bit error rate (BER) of 10-12 or
better!

• Perhaps TCP is expecting too much from
the network

• Loss isn’t always congestion
• Solution: Modify TCP’s congestion control

179

TCP Throughput Model Revisited

• Original formula assumptions
– constant packet loss rate
– dominated by congestion from other flows
– 6 x MTU provides 6 x throughput

• HPC environment (low congestion)
– Loss may be dominated by bit error rates
– MSS becomes sqrt(MSS)
– 6 x MTU provides 2.4 x throughput

More About TCP

Some high performance options

181

High Performance TCP Features

• Window Scale
• Timestamps
• Selective Acknowledgement (SACK)
• Path MTU Discovery (PMTUD)
• Explicit Congestion Notification (ECN)

182

TCP Window Scale

• 16-bit window, 65535 byte maximum
• RFC1323 window scale option in SYN

packets
• Creates a 32-bit window by left shifting 0 to

14 bit positions
– New max window is 1 GB (230)
– Granularity: 1B, 2B, 4B, …, 16KB

183

TCP Timestamps
• 12 byte option

– drops MSS of 1460 to 1448
• Allows better Round Trip Time

Measurement (RTTM)
• Prevention Against Wrapped Sequence

numbers (PAWS)
– 32 bit sequence number wraps in 17 sec at 1 Gbps
– TCP assumes a Maximum Segment Lifetime (MSL) of

120 seconds

184

Selective ACK
• TCP originally could only ACK the last in

sequence byte received (cumulative ACK)
• RFC2018 SACK allows ranges of bytes to be

ACK’d
– Sender can fill in holes without resending everything
– Up to four blocks fit in the TCP option space (three

with the timestamp option)
• Surveys have shown that SACK implementations

often have errors
– RFC3517 addresses how to respond to SACK

185

Duplicate SACK

• RFC2883 extended TCP SACK option to
allow duplicate packets to be SACK’d

• D-SACK is a SACK block that reports
duplicates

• Allows the sender to infer packet reordering

186

Forward ACK Algorithm

• Forward ACK (FACK) is the forward-most
segment acknowledged in a SACK

• FACK TCP uses this to keep track of
outstanding data

• During fast recovery, keeps sending as long
as outstanding data < cwnd

• Generally a good performer - recommended

187

Path MTU Discovery

• Probes for the largest end-to-end
unfragmented packet

• Uses don’t-fragment option bit, waits for
must-fragment replies

• Possible black holes
– some devices will discard the large packets

without sending a must-fragment reply
– Problems are discussed in RFC2923

188

Explicit Congestion Notification (ECN)

• RFC3168, Proposed Standard
• Indicates congestion without packet discard
• Uses last two bits of the IP Type of Service

(TOS) field
• Black hole warning

– Some devices silently discard packets with
these bits set

189

TCP Connection Establishment

• Three-way handshake
– SYN
– SYN+ACK
– ACK

• Use tcpdump, look for performance features
– window sizes, window scale, timestamps,

MSS, SackOK, Don’t-Fragment (DF)

190

Tcpdump of TCP Handshake

16:08:33.674226 wcisd.hpc.mil.40874 > damp-nrl.56117:
S 488615735:488615735(0) win 5840
<mss 1460,sackOK,timestamp 263520790 0,nop,wscale 0> (DF)

16:08:33.734045 damp-nrl.56117 > wcisd.hpc.mil.40874:
S 490305274:490305274(0) ack 488615736 win 5792
<mss 1460,sackOK,timestamp 364570771 263520790,nop,wscale 5> (DF)

16:08:33.734103 wcisd.hpc.mil.40874 > damp-nrl.56117:
. ack 1 win 5840
<nop,nop,timestamp 263520796 364570771> (DF)

191

SYN Option Check Server

• http://syntest.psc.edu:7961/
• telnet syntest.psc.edu 7960
Your IP address is: 192.168.26.200
!
! Check of SYN options
!
!===
! Variable : Val : Warning (if any)
!===
SACKEnabled : 3 :
TimestampsEnabled : 1 :
CurMSS : 1448 :
WinScaleRcvd : 2 :
CurRwinRcvd : 1460 :
!
! End of SYN options
!

System Tuning

Interfaces, routes, buffers, etc.

193

Things You Can Do

• Throw out your low speed interfaces and
networks!

• Make sure routes and DNS report high
speed interfaces

• Don’t over-utilize your links (<50%)
• Use routers sparingly, host routers not at all

routed -q

194

Things You Can Do

• Make sure your HPC apps offer sufficient receive
windows and use sufficient send buffers
– But don’t run your system out of memory
– Find out the rtt with ping, compute BDP
– Tune system wide, by application, or automatically

• Check your TCP for high performance features
• Look for sources of loss

– Watch out for duplex problems

195

TCP Performance

• Maximum TCP throughput is one window
per round trip time

• System default and maximum window sizes
are usually too small for HPC

• The #1 cause of slow TCP transfers!

196

Minimum TCP Window Sizes

44 MB24 MB2280 Mbps

176 MB97 MB9100 Mbps

11 MB6.0 MB570 Mbps

2.7 MB1.5 MB140 Mbps

775KB425KB40 Mbps

155 msec85 msecThroughput\rtt

197

Increase Your Max Window Size
Linux example

• Command line:
sysctl -w net.core.rmem_max=40000000

sysctl -w net.core.wmem_max=40000000

• In /etc/sysctl.conf (makes it permanent)
net.core.rmem_max = 40000000

net.core.wmem_max = 40000000

198

Increase Your Default Window Size
Linux example

• In /etc/sysctl.conf
net.ipv4.tcp_rmem = 4096 349520 20000000

net.ipv4.tcp_wmem = 4096 65536 20000000

• Three values are: minimum, default, maximum for
automatic buffer allocation on Linux

199

Application Buffer Sizes

• Before doing a connect or accept
setsockopt(fd, SOL_SOCKET, SO_SNDBUF,
…)

setsockopt(fd, SOL_SOCKET, SO_RCVBUF,
…)

200

Dr. TCP
A TCP Stack Tuner for Windows

http://www.dslreports.com/front/drtcp.html

• Beware that modem utilities such as DunTweak can reduce
performance on high speed nets

201

Tuning Other Systems

• See “Enabling High Performance Data
Transfers”
http://www.psc.edu/networking/projects/tcptune/

202

FTP Buffer Sizes
• Many FTP’s allow the user to set buffer sizes

– The commands are different everywhere!
• kftp buffer size commands

lbufsize 8388806 (local)
rbufsize 8388806 (remote)
– Other kftp commands

• protect/cprotect (clear|safe|private)
• passive – client opens the data channel connection

• For other versions of FTP, see
http://dast.nlanr.net/Projects/FTP.html

203

vsftpd FTP server

• Small, fast, secure
• 2.x has SSL / TLS support
• http://vsftpd.beasts.org/

204

GridFTP

• FTP Protocol Extensions
– SBUF and ABUF – set / auto buffer sizes
– SPOR and SPAS – striped port / passive

205

Autobuf – An Auto-tuning FTP
http://dast.nlanr.net/Projects/Autobuf/

• Measures the spread of a burst of ICMP
Echo packets to estimate BDP, sets bufs

206

High Performance SCP (HPN-SSH)

• The SSH/SCP secure shell applications use
tiny internal flow control buffers

• For greatly improved performance over
large round trip times, see
– http://www.psc.edu/networking/projects/hpn-ssh/

207

Tuning Success Story

• Rome NY to Maui HI, using kftp
• Before tuning: 3.2 Mbps
• After tuning: 40 Mbps (DS3 line rate)

A very common story…

208

Good Tuning References
• Users Guide to TCP Windows

www.ncsa.uiuc.edu/People/vwelch/net_perf/tcp_windows.html

• TCP Tuning Guide
www-didc.lbl.gov/TCP-tuning/

• WAN Tuning and Troubleshooting
www.internet2.edu/~shalunov/writing/tcp-perf.html

• Enabling High Performance Data Transfers on Hosts
www.psc.edu/networking/projects/tcptune/

Throughput Tests

210

Throughput Testing Tools
• ttcp – the original, many variations

– http://sd.wareonearth.com/~phil/net/ttcp/

• nuttcp – great successor to ttcp (recommended)
– ftp://ftp.lcp.nrl.navy.mil/pub/nuttcp/

• Iperf – great TCP/UDP tool (recommended)
– http://dast.nlanr.net/Projects/Iperf/

• netperf – dated but still in wide use
– http://www.netperf.org/

• ftp – nothing beats a real application

211

Throughput Testing Notes

• Network data rates (bps) are powers of 10,
not powers of 2 as used for Bytes
– E.g. 100 Mbps ethernet is 100,000,000 bits/sec
– Some tools wrongly use powers of 2 (e.g. ttcp)

• User payload data rates are reported by tools
– No TCP, IP, Ethernet, etc. headers are included
– E.g. 100 Mbps ethernet max is 97.5293 Mbps

• http://sd.wareonearth.com/~phil/net/overhead/

212

nuttcp
• My favorite TCP/UDP test tool
• Get the latest .c file

– ftp://ftp.lcp.nrl.navy.mil/pub/nuttcp/

• Compile it:
– cc –O3 –o nuttcp nuttcp-5.5.2.c

• Start a server:
– nuttcp –S
– Allows remote users to run tests to/from that host

without accounts

213

A Permanent nuttcp Server
RedHat Linux example

Create a file /etc/xinetd.d/nuttcp

default: off
description: nuttcp
service nuttcp
{

socket_type = stream
wait = no
user = nobody
server = /usr/local/bin/nuttcp
server_args = -S
disable = no

}

214

Nuttcp vs. Iperf
• Iperf is probably better for

– Parallel stream reporting (-P)
– Bi-directional tests (-d)
– MSS control (-M) and reporting (-m)

• Nuttcp is better at
– Getting server results back to the client
– Third party support
– Traceroute (-xt)
– Setting priority (-xP)
– Undocumented instantaneous rate limit (-Ri)

215

Bandwidth Test Controller (BWCTL)

• A remote interface to iperf
• Provides access / policy control
• Keeps tests from overlapping
• Useful for cross network testing

– See the Performance Measurement Point list
– http://e2epi.internet2.edu/pipes/pmp/pmp-dir.html

• http://e2epi.internet2.edu/bwctl/

216

BWCTL Test Example
DREN in San Diego to Abilene in Seattle

[phil@damp-ssc phil]$ bwctl -A A AESKEY phil -L 3600 -i 1 -w 8M -c nms1-sttl.abilene.ucaid.edu
Enter passphrase for identity 'phil':
bwctl: 16 seconds until test results available
RECEIVER START
3348416450.867761: /ami/bin/iperf -B 198.32.8.190 -P 1 -s -f b -m -p 5004 -w 8388608 -t 10 -i 1
--
Server listening on TCP port 5004
Binding to local address 198.32.8.190
TCP window size: 16777216 Byte (WARNING: requested 8388608 Byte)
--
[14] local 198.32.8.190 port 5004 connected with 138.18.190.5 port 5004
[14] 0.0- 1.0 sec 11862696 Bytes 94901568 bits/sec
[14] 1.0- 2.0 sec 17112464 Bytes 136899712 bits/sec
[14] 2.0- 3.0 sec 17150112 Bytes 137200896 bits/sec
[14] 3.0- 4.0 sec 17232648 Bytes 137861184 bits/sec
[14] 4.0- 5.0 sec 17251472 Bytes 138011776 bits/sec
[14] 5.0- 6.0 sec 17229752 Bytes 137838016 bits/sec
[14] 6.0- 7.0 sec 17252920 Bytes 138023360 bits/sec
[14] 7.0- 8.0 sec 17281880 Bytes 138255040 bits/sec
[14] 8.0- 9.0 sec 17294912 Bytes 138359296 bits/sec
[14] 9.0-10.0 sec 17274640 Bytes 138197120 bits/sec
[14] 0.0-10.6 sec 177283072 Bytes 133823782 bits/sec
[14] MSS size 8948 bytes (MTU 8988 bytes, unknown interface)
RECEIVER END

Testing a Path
Example

San Diego CA to Washington DC
OC12 path

218

Traceroute
[phil@damp-ssc phil]$ nuttcp -xt damp-nrl
traceroute to damp-nrl-ge (138.18.23.37), 30 hops max, 38 byte packets
1 ge-0-1-0.sandiego.dren.net (138.18.190.1) 0.255 ms 0.237 ms 0.238 ms
2 so12-0-0-0.nrldc.dren.net (138.18.1.7) 72.185 ms 72.162 ms 72.164 ms
3 damp-nrl-ge (138.18.23.37) 72.075 ms 72.069 ms 72.070 ms

traceroute to 138.18.190.5 (138.18.190.5), 30 hops max, 38 byte packets
1 ge-0-1-0.nrldc.dren.net (138.18.23.33) 0.239 ms 0.199 ms 0.184 ms
2 so12-0-0-0.sandiego.dren.net (138.18.4.21) 72.210 ms 72.979 ms 72.217 ms
3 damp-ssc-ge (138.18.190.5) 72.087 ms 72.079 ms 72.068 ms

Make sure it goes where you expect!

219

Check Path RTT and MTU
[phil@damp-ssc phil]$ ping damp-nrl
PING damp-nrl-ge (138.18.23.37) from 138.18.190.5 : 56(84) bytes of data.
64 bytes from damp-nrl-ge (138.18.23.37): icmp_seq=1 ttl=62 time=72.0 ms
64 bytes from damp-nrl-ge (138.18.23.37): icmp_seq=2 ttl=62 time=72.0 ms
64 bytes from damp-nrl-ge (138.18.23.37): icmp_seq=3 ttl=62 time=72.0 ms
64 bytes from damp-nrl-ge (138.18.23.37): icmp_seq=4 ttl=62 time=72.0 ms
64 bytes from damp-nrl-ge (138.18.23.37): icmp_seq=5 ttl=62 time=72.0 ms

--- damp-nrl-ge ping statistics ---
5 packets transmitted, 5 received, 0% loss, time 4035ms
rtt min/avg/max/mdev = 72.071/72.082/72.092/0.007 ms

[phil@damp-ssc phil]$ tracepath damp-nrl
1?: [LOCALHOST] pmtu 9000
1: ge-0-1-0.sandiego.dren.net (138.18.190.1) asymm 2 1.060ms
2: so12-0-0-0.nrldc.dren.net (138.18.1.7) asymm 3 72.905ms
3: damp-nrl-ge (138.18.23.37) 72.747ms reached

Resume: pmtu 9000 hops 3 back 3

RTT = 0.072, MSS = 9000-20-20-12 = 8948

220

Do the Math

• Bandwidth * Delay Product
– BDP = 622000000/8 * 0.072 = 5.6 MB

• The TCP receive window needs to be at
least this large

• The sender buffer should be twice this size
• We choose 8MB for both

– Knowing that Linux will double it for us!

221

Check Buffer Sizes
[phil@damp-ssc phil]$ nuttcp -v -t -T10 -w8m damp-nrl
nuttcp-t: v5.1.10: socket
nuttcp-t: buflen=65536, nstream=1, port=5001 tcp -> damp-nrl
nuttcp-t: time limit = 10.00 seconds
nuttcp-t: connect to 138.18.23.37
nuttcp-t: send window size = 16777216, receive window size = 103424
nuttcp-t: 608.0786 MB in 10.00 real seconds = 62288.32 KB/sec = 510.2659 Mbps
nuttcp-t: 9730 I/O calls, msec/call = 1.05, calls/sec = 973.33
nuttcp-t: 0.0user 0.9sys 0:10real 9% 0i+0d 0maxrss 2+0pf 0+0csw

nuttcp-r: v5.1.10: socket
nuttcp-r: buflen=65536, nstream=1, port=5001 tcp
nuttcp-r: accept from 138.18.190.5
nuttcp-r: send window size = 103424, receive window size = 16777216
nuttcp-r: 608.0786 MB in 10.20 real seconds = 61039.55 KB/sec = 500.0360 Mbps
nuttcp-r: 71224 I/O calls, msec/call = 0.15, calls/sec = 6981.97
nuttcp-r: 0.0user 0.5sys 0:10real 5% 0i+0d 0maxrss 3+0pf 0+0csw

222

Things to Check

• The receiver’s (nuttcp-r) receive buffer size
• The transmitter’s (nuttcp-t) send buffer size
• The receiver’s reported throughput

– The transmitter number is often too high
• The CPU utilization of both sender and receiver

– Make sure you didn’t run out of CPU

223

Throughput Test (with -i)
[phil@damp-ssc phil]$ nuttcp -t -T10 -i1 -w8m damp-nrl

1.5531 MB / 1.00 sec = 13.0935 Mbps
44.3144 MB / 1.00 sec = 371.7978 Mbps
67.9265 MB / 1.00 sec = 569.9192 Mbps
67.5937 MB / 1.00 sec = 567.1195 Mbps
67.5339 MB / 1.00 sec = 566.6178 Mbps
67.5937 MB / 1.00 sec = 567.1184 Mbps
67.6363 MB / 1.00 sec = 567.4661 Mbps
67.5937 MB / 1.00 sec = 567.1195 Mbps
67.7558 MB / 1.00 sec = 568.4850 Mbps
67.8753 MB / 1.00 sec = 569.4834 Mbps

601.0000 MB / 10.19 sec = 494.5603 Mbps 8 %TX 4 %RX

Slow start

Stable

224

Reverse Throughput Test (-r)
[phil@damp-ssc phil]$ nuttcp -r -T10 -i1 -w8m damp-nrl

2.2614 MB / 1.00 sec = 18.9842 Mbps
48.4872 MB / 1.00 sec = 406.7883 Mbps
38.9809 MB / 1.00 sec = 327.0350 Mbps
29.8672 MB / 1.00 sec = 250.5731 Mbps
51.3801 MB / 1.00 sec = 431.0547 Mbps
50.1768 MB / 1.00 sec = 420.9644 Mbps
24.6874 MB / 1.00 sec = 207.1180 Mbps
15.0616 MB / 1.00 sec = 126.3602 Mbps
15.8211 MB / 1.00 sec = 132.7315 Mbps
16.5891 MB / 1.00 sec = 139.1766 Mbps

303.6979 MB / 10.60 sec = 240.3490 Mbps 4 %TX 2 %RX

Slow start

Unstable

225

UDP Test (-u –l –R)
[phil@damp-ssc phil]$ nuttcp -t -u -l8000 -R500m -T10 -i1 –w8m damp-nrl

59.2346 MB / 0.99 sec = 499.6586 Mbps 0 / 7764 ~drop/pkt 0.00 ~%loss
59.6008 MB / 1.00 sec = 500.0570 Mbps 0 / 7812 ~drop/pkt 0.00 ~%loss
59.5932 MB / 1.00 sec = 499.9935 Mbps 0 / 7811 ~drop/pkt 0.00 ~%loss
59.5932 MB / 1.00 sec = 500.0000 Mbps 0 / 7811 ~drop/pkt 0.00 ~%loss
59.5932 MB / 1.00 sec = 499.9950 Mbps 0 / 7811 ~drop/pkt 0.00 ~%loss
59.5932 MB / 1.00 sec = 499.9905 Mbps 0 / 7811 ~drop/pkt 0.00 ~%loss
59.5932 MB / 1.00 sec = 499.9925 Mbps 0 / 7811 ~drop/pkt 0.00 ~%loss
59.5932 MB / 1.00 sec = 499.9950 Mbps 0 / 7811 ~drop/pkt 0.00 ~%loss
59.5932 MB / 1.00 sec = 499.9930 Mbps 0 / 7811 ~drop/pkt 0.00 ~%loss
59.5932 MB / 1.00 sec = 499.9920 Mbps 0 / 7811 ~drop/pkt 0.00 ~%loss

595.9778 MB / 10.01 sec = 499.5061 Mbps 99 %TX 3 %RX 0 / 78116 drop/pkt
0.00 %loss

226

Reverse UDP Test
[phil@damp-ssc phil]$ nuttcp -r -u -l8000 -R500m -T10 -i1 –w8m damp-nrl

56.8237 MB / 0.99 sec = 481.1408 Mbps 0 / 7448 ~drop/pkt 0.00 ~%loss
59.5169 MB / 1.00 sec = 499.3279 Mbps 1 / 7802 ~drop/pkt 0.01 ~%loss
59.2651 MB / 1.00 sec = 497.2097 Mbps 0 / 7768 ~drop/pkt 0.00 ~%loss
59.0591 MB / 1.00 sec = 495.4825 Mbps 0 / 7741 ~drop/pkt 0.00 ~%loss
58.9828 MB / 1.00 sec = 494.8439 Mbps 0 / 7731 ~drop/pkt 0.00 ~%loss
60.7300 MB / 1.00 sec = 509.5001 Mbps 0 / 7960 ~drop/pkt 0.00 ~%loss
59.4482 MB / 1.00 sec = 498.7424 Mbps 2 / 7794 ~drop/pkt 0.03 ~%loss
59.7839 MB / 1.00 sec = 501.5677 Mbps 2 / 7838 ~drop/pkt 0.03 ~%loss
58.8760 MB / 1.00 sec = 493.9463 Mbps 0 / 7717 ~drop/pkt 0.00 ~%loss
59.8526 MB / 1.00 sec = 502.1347 Mbps 0 / 7845 ~drop/pkt 0.00 ~%loss

595.8939 MB / 10.01 sec = 499.4702 Mbps 100 %TX 3 %RX 5 / 78110
drop/pkt 0.01 %loss

227

Is Loss the Limiter?

bps = 0.7 * MSS / (rtt * sqrt(loss))
= 0.7 * 8948*8 / (0.072 * sqrt(5/78110))
= 87 Mbps

Conclusion: Too much loss on DC to CA path

228

Finding Packet Loss

• Set up firewall filters in the WAN routers to count
nuttcp packets

• Example nuttcp
– nuttcp -n10000 –u –l1400 –Ri50m –i1 dest
– nuttcp -n10000 –u –l1400 –Ri50m –i1 –c1 dest

• Look at WAN counters for 10008 packets
• This usually localizes the problem to the source site,

WAN, or destination site
• Then you start moving things around

229

Testing Notes
• When UDP testing

– Be careful of fragmentation (path MTU)
– Most systems are better at TCP than UDP
– Setting large socket buffers helps
– Raising process priority helps
– Duplex problems don’t show up with UDP!

• Having debugged test points is critical
– Local and remote

• A performance history is valuable

230

Duplex Problem Symptoms

• Will never see it with pings or UDP tests
• TCP throughput is sometimes ½ of expected

rate, sometimes under 1 Mbps
• Worse performance usually results when the

mismatch is near the receiver of a TCP flow
• Sometimes reported as “late collisions”

231

Checking Systems for Errors

• Don’t forget
– ifconfig

UP BROADCAST RUNNING MULTICAST MTU:9000 Metric:1
RX packets:414639041 errors:0 dropped:0 overruns:0 frame:0
TX packets:378926231 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

– netstat –s
Tcp: 59450 segments retransmited

– dmesg or /var/log
ixgb: eth2 NIC Link is Up 10000 Mbps Full Duplex

Example Measurement
Infrastructure

233

DREN Active Measurement
Program (DAMP)

• Grew out of the NLANR AMP project
– http://amp.nlanr.net/

• Long term active performance monitoring
– Delay, loss, routes, throughput
– Dedicated hardware; known performance
– User accessible test points

• Invaluable at identifying and debugging
problems

234

DREN AMP Systems

pnw

ssc
navo

nrl

arl
asc

23 CONUS, 3 Hawaii, 1 Alaska

235

10GigE Test Systems

• Dell 2650, 3.0 GHz Xeon, 533 MHz FSB, 512 KB L2
cache, 1 MB L3 cache, PCI-X
– Linux 2.4.26-web100
– Two built-in BCM5703 10/100/1000 copper NICs, tg3 driver
– Intel PXLA8590LR 10GigE NIC, ixgb 1.0.65 driver

• 4.6 Gbps TCP on LAN after tuning (7.7 Gbps loopback)
– 2.2 Gbps TCP from MD to MS over OC48

• New NICs: Intel, Neterion X-Frame, Chelsio T110/N110

236

Precise Time

• 10 msec NTP accuracy w/o clock
– asymmetric paths and clock hopping

• 10 usec NTP accuracy with attached clock
– Serial port connection, tagged events
– GPS: Trimble Acutime 2000 kit
– CDMA: EndRun Technologies Praecis Ct

237

AMP Tests on Demand

• Web page interface
• 10 second TCP throughput test

– Uses nuttcp third party support
• Can also access them directly

238

Need to test over a distance

• Round trip time amplifies most problems
• Many local problems won’t be seen over a

short round trip time (i.e. within your site!)
– Window size won’t matter
– TCP error recovery is extremely quick

• Firewalls and screening routers (ACLs)
could be part of the problem

239

Test Pairs

A

AMP2AMP1

B
Actual Application Pair

AMP Performance
Data

240

Problems We Have Found
• Small windows on end systems
• Duplex problems
• Bad cables (patch panels, fiber, cat5)
• Faulty switches, router modules, or NICs
• Slow firewalls or routers

– Excessive logging
• Jumbo frame issues / mismatches
• Flow control issues
• WAN bit errors
• Routing issues
• Heat problems!

Advanced Debugging

TCP Traces and Tools

242

TCP/IP Analysis Tools

• tcpdump
– www.tcpdump.org

• ethereal - GUI tcpdump (protocol analyzer)
– www.ethereal.com

• tcptrace – stats/graphs of tcpdump data
– www.tcptrace.org

• xplot – for displaying tcptrace graphs

243

“A Preconfigured TCP Test Rig”

• http://www.ncne.org/research/tcp/testrig/

244

Collecting A TCP Trace

tcpdump -p -w trace.out -s 100 host
$desthost and port 5001 &

nuttcp -T10 -n200m -i1 -w10m $desthost
tcptrace -l -r trace.out
tcptrace -S -zxy trace.out (or –G for all graphs)

xplot *.xpl

245

tcptrace -l -r
TCP connection 1:

host a: damp-nrl-ge:58310
host b: damp-ssc-ge:5001
complete conn: no (SYNs: 2) (FINs: 0)
first packet: Wed Oct 13 17:30:30.272579 2004
last packet: Wed Oct 13 17:30:39.289916 2004
elapsed time: 0:00:09.017336
total packets: 36063
filename: nrl-ssc.trace

a->b: b->a:
total packets: 23473 total packets: 12590
ack pkts sent: 23472 ack pkts sent: 12590
pure acks sent: 1 pure acks sent: 12589
sack pkts sent: 0 sack pkts sent: 1774
dsack pkts sent: 0 dsack pkts sent: 0
max sack blks/ack: 0 max sack blks/ack: 1
unique bytes sent: 209714276 unique bytes sent: 0
actual data pkts: 23471 actual data pkts: 0
actual data bytes: 210018508 actual data bytes: 0
rexmt data pkts: 34 rexmt data pkts: 0
rexmt data bytes: 304232 rexmt data bytes: 0
zwnd probe pkts: 0 zwnd probe pkts: 0
zwnd probe bytes: 0 zwnd probe bytes: 0
outoforder pkts: 0 outoforder pkts: 0
pushed data pkts: 555 pushed data pkts: 0

246

tcptrace -l -r (cont.)
SYN/FIN pkts sent: 1/0 SYN/FIN pkts sent: 1/0
req 1323 ws/ts: Y/Y req 1323 ws/ts: Y/Y
adv wind scale: 7 adv wind scale: 7
req sack: Y req sack: Y
sacks sent: 0 sacks sent: 1774
urgent data pkts: 0 pkts urgent data pkts: 0 pkts
urgent data bytes: 0 bytes urgent data bytes: 0 bytes
mss requested: 8960 bytes mss requested: 8960 bytes
max segm size: 8948 bytes max segm size: 0 bytes
min segm size: 8948 bytes min segm size: 0 bytes
avg segm size: 8947 bytes avg segm size: 0 bytes
max win adv: 17920 bytes max win adv: 8388480 bytes
min win adv: 17920 bytes min win adv: 17792 bytes
zero win adv: 0 times zero win adv: 0 times
avg win adv: 17920 bytes avg win adv: 8044910 bytes
initial window: 17896 bytes initial window: 0 bytes
initial window: 2 pkts initial window: 0 pkts
ttl stream length: NA ttl stream length: NA
missed data: NA missed data: NA
truncated data: 209220494 bytes truncated data: 0 bytes
truncated packets: 23471 pkts truncated packets: 0 pkts
data xmit time: 8.945 secs data xmit time: 0.000 secs
idletime max: 141.4 ms idletime max: 73.8 ms
throughput: 23256786 Bps throughput: 0 Bps

247

tcptrace -l -r (cont.)
RTT samples: 10814 RTT samples: 1
RTT min: 72.1 ms RTT min: 0.0 ms
RTT max: 144.2 ms RTT max: 0.0 ms
RTT avg: 102.1 ms RTT avg: 0.0 ms
RTT stdev: 28.9 ms RTT stdev: 0.0 ms

RTT from 3WHS: 72.1 ms RTT from 3WHS: 0.0 ms

RTT full_sz smpls: 10813 RTT full_sz smpls: 1
RTT full_sz min: 72.7 ms RTT full_sz min: 0.0 ms
RTT full_sz max: 144.2 ms RTT full_sz max: 0.0 ms
RTT full_sz avg: 102.1 ms RTT full_sz avg: 0.0 ms
RTT full_sz stdev: 28.9 ms RTT full_sz stdev: 0.0 ms

post-loss acks: 4 post-loss acks: 0
For the following 5 RTT statistics, only ACKs for
multiply-transmitted segments (ambiguous ACKs) were
considered. Times are taken from the last instance
of a segment.

ambiguous acks: 30 ambiguous acks: 0
RTT min (last): 72.7 ms RTT min (last): 0.0 ms
RTT max (last): 74.9 ms RTT max (last): 0.0 ms
RTT avg (last): 73.3 ms RTT avg (last): 0.0 ms
RTT sdv (last): 0.8 ms RTT sdv (last): 0.0 ms
segs cum acked: 12508 segs cum acked: 0
duplicate acks: 1742 duplicate acks: 0
triple dupacks: 4 triple dupacks: 0
max # retrans: 1 max # retrans: 0
min retr time: 73.7 ms min retr time: 0.0 ms
max retr time: 140.2 ms max retr time: 0.0 ms
avg retr time: 89.2 ms avg retr time: 0.0 ms
sdv retr time: 10.3 ms sdv retr time: 0.0 ms

248

TCP Startup

249

TCP Startup – Detail 1

250

TCP Startup – Detail 2

251

TCP Single Loss/Retransmit

252

TCP Sender Pause

253

Linux 2.4.26-web100 Example

Linux 2.4.26-web100 Example

2

3

4

1

254

Detail 1: StartupDetail 1: Start

255

Detail 2: TimeoutDetail 2: Timeout

256

Detail 3: Single SACK Loss
Detail 3: Single SACK Loss

257

Detail 4: Multiple SACK LossDetail 4: Multiple SACK Loss

258

Normal TCP Scallops

NLANR
NCNE

259

A Little More Loss

NLANR
NCNE

260

Excessive Timeouts

NLANR
NCNE

261

Bad Window Behavior

NLANR
NCNE

262

Receiving Host/App Too Slow

NLANR
NCNE

263

Web100
www.web100.org

• Set out to make 100 Mbps TCP common
• “TCP knows what’s wrong with the network”

– The sender side knows the most
• Instruments the TCP stack for diagnostics
• Enhanced TCP MIB (IETF Draft)
• Linux 2.6 kernel patches + library and tools
• /proc/web100 file system

e.g. /proc/web100/1010/{read,spec,spec-ascii,test,tune)

264

Web100 – Connection Selection

265

Web100 - Tool/Variable
Selection

266

Web100 – Variable Display,
Triage Chart

See also www.net100.org for more work based on Web100

267

Network Diagnostic Tool (NDT)

• http://e2epi.internet2.edu/ndt/
• Java applet runs a test and uses Web100

stats to diagnose the end to end path
• Developed by Richard Carlson, ANL

268

NDT Example
http://miranda.ctd.anl.gov:7123/

269

NDT Statistics

270

Iperf with Web100, Clean Link
wcisd$ iperf-web100 -e -w400k -p56117 -c damp-wcisd
--
Client connecting to damp-wcisd, TCP port 56117
TCP window size: 800 KByte (WARNING: requested 400 KByte)
--
[3] local 192.168.26.200 port 33185 connected with 192.168.26.61 port 56117
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 113 MBytes 94.1 Mbits/sec

------ Web100 Analysis ------

100 Mbps FastEthernet link found
Good network cable(s) found
Duplex mismatch condition NOT found
Link configured for Full Duplex operation
Information: This link is congested with traffic

Web100 reports the Round trip time = 14.0 msec; the Packet size = 1448 Bytes; and
There were 1 packets retransmitted, 0 duplicate acks received, and 0 SACK blocks received
This connection is network limited 99.99% of the time.
Contact your local network administrator to report a network problem

Web100 reports the Tweakable Settings are:
RFC-1323 Time Stamping: On
RFC-1323 Window Scaling Option: On
RFC-2018 Selective Acknowledgment (SACK): On

271

Iperf with Web100, Lossy Link
wcisd$ iperf-web100 -e -w400k -p56117 -c damp-ssc2
--
Client connecting to damp-ssc2, TCP port 56117
TCP window size: 800 KByte (WARNING: requested 400 KByte)
--
[3] local 192.168.26.200 port 33198 connected with 192.168.25.74 port 56117
[ID] Interval Transfer Bandwidth
[3] 0.0-10.2 sec 35.0 MBytes 28.9 Mbits/sec

------ Web100 Analysis ------

Unknown link type found
Good network cable(s) found
Warning: Duplex mismatch condition exists: Host HD and Switch FD
Information: link configured for Half Duplex operation
No congestion found on this link

Web100 reports the Round trip time = 2.0 msec; the Packet size = 1448 Bytes; and
There were 617 packets retransmitted, 4072 duplicate acks received, and 4370 SACK blocks received
The connection stalled 1 times due to packet loss
The connection was idle for 0.21 seconds (2.06%) of the time
This connection is network limited 99.99% of the time.
Contact your local network administrator to report a network problem

272

NPAD / pathdiag

• Network Path and Application Diagnostics
• A new NDT like system from the people

that brought you Web100
• http://www.psc.edu/networking/projects/pathdiag/
• Example server:

– http://kirana.psc.edu/NPAD/

Going Faster

Cheating Today, Improving TCP
Tomorrow

274

Multiple Streams

• Often N streams provide more total
throughput than one stream

• It’s “cheating” however because it gives
you more than your fair share

• There may however be bandwidth going to
waste, so go for it

• One stream should be enough however for a
good / modern / tuned TCP stack

275

Parallel TCP Streams

• nuttcp and iperf can test parallel streams
– Lets you see if this will help

• PSockets (Parallel Sockets library), SC2000
– http://citeseer.ist.psu.edu/386275.html

• Several parallel client applications exist
– MPSCP, bbFTP, UberFTP

276

Parallel TCP Stream Performance

Les Cottrell, SLAC

277

Parallel TCP Streams
Throughput and RTT by Window Size

Les Cottrell, SLAC

278

MPSCP
• Multi-Path Secure Copy (MPSCP)
• Marty Barnaby, Sandia National Laboratory (DoE),

mlbarna@sandia.gov
• Open source, BSD license
• http://www.sandia.gov/MPSCP/mpscp_design.htm

Fork x manyFork x many

High-speed Data

Local MPSCP

Data Mover

Data Mover

SSH Client
Remote MPSCP

SSH Daemon

Data Mover

Data Mover

(Can be either direction)

Diagram from the MPSCP Website

279

Characteristics of MPSCP
• Host-to-host file copy utility intended to enable greater

transfer rates over high bandwidth networks
• Uses Secure Shell (ssh) for user authentication and control

stream
– Control stream is encrypted

• Uses multiple TCP data streams (1 to 64)
– Data streams are not encrypted

• Can use multiple interfaces on end systems
• User interface is command line based and very easy to use

– Similar to Remote Copy (rcp) and Secure Copy (scp)
• Same application binary on both sending and receiving hosts

– No daemon required
• DoD HPCMP added an MD5 hash function to MPSCP

Ralph McEldowney, ASC

280

2006 MPSCP Test Results
From SGI Altix in OH to SGI Origin in MS

0

100

200

300

400

500

600

700

800

900

1000

1 GB 2 GB 5 GB 10 GB 20 GB

File Size

Tr
an

sf
er

 R
at

e
(M

bp
s)

mpscp-1
mpscp-2
mpscp-4
mpscp-8
mpscp-16
mpscp-32

Ralph McEldowney, ASC

281

2006 MPSCP Test Results
From HP XC to SGI Altix on a LAN

0

500

1000

1500

2000

2500

3000

1 GB 2 GB 5 GB 10 GB 20 GB

File Size

Tr
an

sf
er

 R
at

e
(M

bp
s) mpscp-1

mpscp-2
mpscp-4
mpscp-8
mpscp-16
mpscp-32
mpscp-64

Ralph McEldowney, ASC

282

bbFTP
• Developer: Gilles Farrache, IN2P3 Computing

Center, Lyon, France
– Current version: 3.2.0 released on 30 May 2005
– Website: http://doc.in2p3.fr/bbftp/

• Description:
– Contact Info: bbftp@in2p3.fr
– Open source software released under the GNU GPL
– Multiple stream data transfers
– SSH and Certificate user authentication module
– Compiled and tested on Linux, Solaris, and AIX

• Used by NASA, DOE, and other HPC centers

283

UberFTP
• Developer: Storage Enabling Technologies, National

Center for Supercomputing Applications (NCSA),
University of Illinois
– Current version: 1.20 released on 21 July 2006
– Website: http://dims.ncsa.uiuc.edu/set/uberftp/
– Contact Info: gridftp@ncsa.uiuc.edu

• Description:
– Open source software license
– Interactive GridFTP-enabled FTP client
– Supports GSI authentication, parallel data channels, and

third party transfers
• Used by NSF TeraGrid sites and other HPC centers

284

Improvements to TCP

• Different congestion control schemes
– Some based on delay / rtt variation

• Pacing - removing burstiness by spreading
the packets over a round trip time
– Vegas, FAST, BLUE

• Autotuning windows and buffer space
• Modifications to prevent “cheating”

285

Increased Initial Windows

• Allows ~4KB initial window rather than
one or two segments
– min(4*MSS, max(2*MSS, 4380 bytes))

• RFC 3390, Oct 2002, Proposed Standard

286

Appropriate Byte Counting
• When an ACK is received, increase cwin based on

the number of new bytes ACK’d
• Prevents receiver from “cheating” and making the

sender open cwin too quickly
– e.g. receiver ACKs every byte

• Increases by at most 2*MSS bytes per ACK
– To avoid bursts when one ACK covers a huge number

of bytes

• RFC 3465, Feb 2003

287

Limited Slow-Start
• In slow-start, the congestions window (cwin)

doubles each round trip time
• For large cwins, this doubling can cause massive

packet loss (and network load)
• Limited slow-start adds max_ssthresh (proposed

value of 100 MSS)
• Above max_ssthresh cwin opens slower, never

bursts more than 100 MSS
cwin += (0.5*max_ssthresh/cwin) * MSS

• RFC 3742, Apr 2004

288

Limit Slow-Start Example

Tom Dunigan, ORNL

289

Quick-Start
draft-amit-quick-start-01.txt

• IP option in the TCP SYN specifies desired
initial sending rate
– Routers on the path decrement a TTL counter

and decrease initial sending rate if necessary
• If all routers participated, receiver tells the

sender the initial rate in the SYN+ACK pkt
• The sender can set cwin based on the rtt of

the SYN and SYN+ACK packets

290

TCP Congestion Control

• The past few years have seen an explosion
of work on modifications / alternatives to
the “Reno” algorithm

• Many of them are now available on Linux
– Reno, BIC, Cubic, Westwood, H-TCP, High

Speed TCP, Hybla, Scalable TCP
– Veno, TCP Low-Priority

291

Pluggable Congestion Control

• Introduced in Linux 2.6.13 (better in 2.6.14)
• Allows congestion control algorithms to be

changed
– System wide, via sysctl
– Per socket, via socket options

• Allows them to be used by non-TCP
protocols

292

TCP Reno
• Most modern TCP’s are “Reno” based, from the

1990 BSD Reno Unix release
• Reno defined (refined) four key mechanisms

– Slow Start
– Congestion Avoidance
– Fast Retransmit
– Fast Recovery

• NewReno refined fast retransmit/recovery when
non-SACK partial acknowledgements are
available
– Proposed Standard, RFC3782, Apr 2004

293

What’s Wrong With Reno?

• Poor performance on high bandwidth delay
paths
– Adapts too slowly
– Requires an unreasonably low loss rate

• Round trip time unfairness
– Short rtt flows get more bandwidth

• Loss isn’t always congestion

294

BIC TCP
• Binary Increase Congestion Control (BIC)
• More aggressive rate adaptation
• Better round trip time fairness
• BIC is now the Linux default!

– since 2.6.8, but had issues until 2.6.11
• http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/

295

CUBIC

• Derivative of BIC-TCP
• Uses a cubic window growth function

– More TCP friendly
• Low utilization detection

– Allows CUBIC to be more aggressive

296

TCP Westwood (TCPW)

• For large bandwidth*delay pipes
• Rate Estimation from ACK stream

– cwnd = RE x RTTmin

– ssthresh
• Agile Probing phase on Persistent Non

Congestion Detection (PNCD)
• http://www.cs.ucla.edu/NRL/hpi/tcpw/

297

HighSpeed TCP (HSTCP)
• Changes the AIMD parameters
• Identical to standard TCP for loss rates above 10-3

for fairness (cwin <= 38)
• Allows cwin to reach 83000 segments for 10-7 loss

rates
– Good for 10 Gbps over 100 msec rtt
– Std TCP would be limited to ~440 Mbps

• RFC 3649, Dec 2003
• www.icir.org/floyd/hstcp.html

298

HighSpeed TCP: response

Sally Floyd, ICSI

299

HighSpeed TCP: fairness

Sally Floyd, ICSI

300

Scalable TCP (STCP)

• Loss recovery time is independent of sending rate
– cwnd := cwnd + 0.01, for each ack while not in loss recovery
– cwnd := 0.875 * cwnd, on each loss event

• http://www.deneholme.net/tom/scalable/

Tom Kelly

301

TCP Low Priority
• Uses unused bandwidth only

– Similar to TCP-Nice
– Similar to the QBone Scavenger Service (QoS)

• Showed that this could be done via congestion
control changes only

• Both standard and High Speed TCP versions
• In Linux 2.6.18
• http://www-ece.rice.edu/networks/TCP-LP/

302

Hybla

• For long delay pipes, e.g. satellite
• Increases adaptation rate with increased

round trip time
• Mostly Reno without the round trip time

unfairness
• http://www3.interscience.wiley.com/cgi-

bin/abstract/109604907/ABSTRACT

303

Veno

• For wireless networks
– Where loss is often not congestion

• Uses a TCP Vegas like estimate of the
connection speed to better set parameters
– Reno + Vegas

• http://www.ntu.edu.sg/home/ascpfu/veno/veno.html

304

FAST TCP

• Delay based congestion control
– “multi-bit” feedback vs. binary loss signal
– Avoids oscillations of cwnd and unnecessary loss

• Won SC05 bandwidth challenge
• http://netlab.caltech.edu/FAST/

Queue
Delay

Window

loss

C R

Reno cwnd

DF

TCP Operating Points
C: CARD
F: FAST, Vegas
D: DUAL
R: Reno, HSTCP, STCP

305

Compound TCP

• Combines loss (NewReno) and delay based
congestion control

• Default in Windows Vista!
– Vista also autotunes the TCP receive window

• Option in Linux since 2.6.18
• MSR-TR-2005-86, July 2005

306

What About IPv6?

8 December 2005

307

IPv4/IPv6 Observations

• Round trip times on all paths were within one
millisecond of each other

• One or more paths achieved line rate
performance for both IPv4 and IPv6 at OC12
and 1GigE rates

• One some paths IPv4 appears more robust,
reasons unknown

UDP Transfer Protocols

309

NETBLT

• RFC969, 1985
• Block transfer protocol (not streaming)

– Send a block at predetermined rate
– Wait for lost packet list
– Resend those, etc.

310

RBUDP

• Reliable Blast UDP
• Similar to NETBLT but in active

development
• Includes real time and FEC support
• http://www.evl.uic.edu/cavern/quanta

311

Tsunami
• UDP data, TCP control, rate adaptive

– Loss rate controls sending rate
• File transfer protocol, no API
• Transferred 1 TB of data at ~1 Gbps over a 12000 km

“light path” (Vancouver to Geneva), Sep 2002
• Was created because TCP over that path was getting only

10’s to 100’s of Mbps!
• Last release, Dec 2002
• http://anml.iu.edu/research.shtml?prim=lab_research
• http://www-iepm.slac.stanford.edu/bw/Tsunami.htm

312

SABUL
• Simple Available Bandwidth Utilization Library
• National Center for Data Mining (NCDM) at UIC

(University of Illinois at Chicago)
• 2000-2003, now in third generation
• UDP data, TCP control, rate adaptive
• Streaming protocol, window + AIMD rate control

(not rtt dependent)
• Includes FTP like application, API
• http://www.dataspaceweb.net/sabul.htm

313

UDT

• UDP-based Data Transport
• UDP for data and control
• Grew out of SABUL work, 2003+
• http://sourceforge.net/projects/dataspace

314

UDP Protocol Security!
• Session hijacking, corruption, encryption

– Learn something from 802.11 wireless?
– See also: DTLS (Datagram Transport Layer Security)

802.11
Hdr Data

Seq
NumData802.11

Hdr
128-bit

IV
128-bit

MIC

Encapsulate Decapsulate

Jesse Walker, Intel

315

TCP Revisited

• “Anything you can do I can do too”
– It’s just algorithms (e.g. congestion control)

• The real UDP advantage:
– User space implementations, i.e. easier

experimentation and deployment!
– But user space is not as efficient

• Until channels…

Beyond TCP and UDP

New Protocols

317

What’s Wrong with TCP?

• Once size doesn’t fit all
– Bulk transfer, transactions, real-time, etc.

• Byte stream semantics vs. datagrams
– No message boundaries, head-of-line blocking

• TCP congestion control (“Reno”) can
introduce large rate changes and delays

• The Reno AIMD algorithm doesn’t scale well
for high bandwidth uncongested networks

318

What’s Wrong with UDP?

• Unreliable
• No congestion control (or rate control)

319

TCP and UDP together

• UDP can muscle TCP out
– Since TCP backs off, but UDP doesn’t

• TCP often builds large queues
– Which causes UDP delays and loss

• To make them co-exist, we often resort to
Class of Service (CoS) solutions

320

New Protocols

IP (v4 or v6)

UDP17TCP6

Routing
Layer

End-to-End
LayerSCTP132 DCCP33

321

SCTP

• Stream Control Transmission Protocol
• RFC2960, Oct 2000

– RFC3257 SCTP Applicability Statement
– RFC3286 Introduction to SCTP
– RFC3309 Checksum Change, Sep 2002
– RFC4460 SCTP Specification Errata and Issues

322

SCTP History

• Begun for SS7 transport over IP (IETF
sigtran working group)

• Became the third general purpose IETF
transport (after UDP and TCP)

323

SCTP Features

• Multi-streams support
– Avoids head-of-line blocking

• Multi-homing support
– Transparent to application

• Preservation of message boundaries
• Unordered reliable message delivery

– Ordered delivery is also available

324

SCTP Multi-Streams

Host
A

Host
B

Stream 1

Stream 2

Stream 3

123

12

1234

325

SCTP Features Continued

• Improved security
– 32 bit Verification Tag
– Cookie based DoS protection

• Improved data integrity (CRC32)

326

SCTP Implementations

• Linux, “LKSCTP”, http://lksctp.sourceforge.net/
– First released Jan 2001
– In 2.4.23 and 2.6

• In Sun Solaris 10
• BSD via the KAME project (IPv6 stack)
• User space implementations – multiple OS

– http://www.sctp.de/sctp-download.html
• Numerous commercial implementations

327

SCTP Performance

• Some tests indicate that the BSD/KAME and
Solaris 10 SCTP implementations are better
than Linux (2.6.15)
– http://sctp.fh-muenster.de/Performance/index.html

• The CRC32 does have a performance impact

328

SCTP Resources

• www.sctp.be
– Excellent, up to date

• www.sctp.org
– Good implementation list

• SCTP, A Reference
Guide, Randall Stewart,
Oct 2001

329

DCCP

• Datagram Congestion Control Protocol
• RFC4340, Proposed Standard, Mar 2006
• Congestion Control ID Profiles

CCID 2, RFC4341, TCP-like Congestion Control
CCID 3, RFC4342, TCP Friendly Rate Control (TFRC)

330

DCCP Design Rationale

• Minimal overhead and complexity
– Wanted existing streaming UDP applications to have little

reason not to switch
• Reliable connection setup, teardown, options,

feedback
• Choice of congestion/rate control algorithms
• Use of Explicit Congestion Notification (ECN) and

the ECN Nonce

331

UDP and DCCP Headers

Src Port Dst Port

Length Checksum

8 Byte UDP Header

Src Port Dst Port

Checksum

12+ Byte DCCP Header

Data
Offset CCVal CsCov

Sequence #0X0 Type

Options
• Seq # can be 16 bits (X=0) or 48 bits (X=1)

• CCVal = 4 bit Congestion Control (CCID specific)

• CsCov = Checksum Coverage

• Type = 1 of 10 packet types

332

DCCP Differences from UDP

• Congestion Controlled
• Session Oriented

– Nicer on firewalls, NAT
• “UDP + congestion control, handshakes, and

acknowledgements”

333

DCCP Differences from TCP

• Unreliable datagrams
• No Flow Control

– No Receive Window, just congestion control
• Can distinguish different types of loss

– Corruption, buffer overflow, etc.
• Denial of Service (DoS) protection
• No simultaneous open or half-closed states
• “TCP – byte stream semantics and reliability”

334

DCCP Implementations

• In Linux since 2.6.14, Oct 2005
– http://linux-net.osdl.org/index.php/DCCP

• Preliminary FreeBSD support available
– http://www.jp.nishida.org/dccp/

• User space DCCP from Berkeley
– http://www.cs.ucsd.edu/~tsohn/projects/dccp/
– http://inesc-0.tagus.ist.utl.pt/~pmsrve/dccp/

335

DCCP Support

• tcpdump 3.9.4 and later
• Patches available for

– Ethereal, Iperf, netcat
• Python, Ruby

336

DCCP Resources

• http://www.read.cs.ucla.edu/dccp/
• The IEFT working group

– http://www.ietf.org/html.charters/dccp-
charter.html

• RFC’s mentioned earlier

337

Protocol Comparison

NoNoNoDatagram
UDP

SequencedSessionYesDatagram
DCCP

Yes or NoYesYes
Byte stream or
DatagramSCTP

YesYesYesByte stream
TCP

OrderReliableCong
Cont

Type

338

What Goes Where?

IP (v4 or v6)

UDP17TCP6

Routing
Layer

End-to-End
LayerSCTP132 DCCP33

Email
SSH
FTP
P2P

VOIP
Streaming Media

Web
RPC

Transactions

DNS
NTP

Multicast

Simulations?

339

Real-time Transport Protocol

IP (v4 or v6)

UDP17TCP6

Routing
Layer

End-to-End
LayerSCTP132 DCCP33

RTP/RTCP

VOIP
Streaming Media

340

New Protocol Summary

• There are now more transport choices than just
“TCP or UDP”

• Most UDP streaming should move to DCCP
• Some applications could benefit from SCTP
• Multicast is still a tough case (UDP only)

341

Pluggable Protocols?

• If we can choose a transport protocol, and
plug custom congestion control, why not
plug the whole networking stack?

• Introducing…

342

Network Channels
• The next big thing in network performance from Van

Jacobson
• Cache friendly ring buffers linking packet streams to

user processes
• Minimal interrupt / softint processing
• Almost all protocol processing happens in user space

– SMP and cache friendly
– Allows application specific customization
– More stable than the current layered kernel/user approach

343

Network Channels
• Demonstrated 6x improvement in bits per CPU cycle!
• Reduced latency
• Nearly linear speed up with multiple CPUs and cores
• Protocol libraries makes almost anything possible
• See “Speeding up Networking” Jan 2006

– http://www.lemis.com/grog/Documentation/
vj/lca06vj.pdf

344

What’s Happening Down Below

• Generic Framing Procedures (GFP)
– Framed (GFP-F)
– Transparent (GFP-T)

• User Controlled Light Paths (UCLP)
– With GMPLS control

Data Integrity

346

Corrupted Packets

• V. Paxson
– Claims most corruption caused by T1’s
– 1 in 5000 packets corrupted
– TCP checksum would then let 1 in 300M

corrupted packets pass
• Roughly two errors per terabyte

347

More Corrupted Packets

• J. Stone, C. Partridge, SIGCOMM 2000
– “Traces of Internet packets over the last two

years show that 1 in 30,000 packets fails the
TCP checksum, even on links where link-level
CRCs should catch all but 1 in 4 billion
errors.”

– DMA transfers account for many of these
errors

– Conclude that 1 in 200M TCP packets pass
with undetected errors

348

Data Integrity

• How do you know that your transferred
copy is correct?

• A simple approach would be copy it two (or
more) times and compare the results

• But you would like to check it with
something smaller than the entire dataset

349

Checksums, CRC’s, Hashes
• All map large blocks of data into smaller keys
• Checksums are simple algebraic sums
• Cyclic Redundancy Checks (CRC’s) are good at

detecting multiple bit errors
• Hashes are good at randomizing the key space

– Good for database lookups, sorting, etc.
– Cryptographic hashes are good for data integrity checks

350

Simple Checksums

• Can not detect several kinds of errors
– Reordering of bytes
– Inserting or deleting zero valued bytes
– Multiple errors that cancel (same sum)

351

The Internet Checksum

• 16 bits long, summed 16 bits at a time
• For UDP/TCP, includes a 12 byte “pseudo

header” from the IP layer with the network
addresses and payload length

• RFC 1071 – Computing the Internet
Checksum

352

IP Data Protection

• IPv4 uses the 16-bit Internet Checksum
over the header information only
– This checksum is recalculated/rewritten hop by

hop, since e.g. the TTL changes
• IPv6 has none, not even over the header

– Assumes layer 2 will protect it

353

IP Options

IPv4 and IPv6 Headers
Vers

4 IHL Type of
Service Total Length

Identification Flags Frag Offset

Time to
Live Protocol Header Checksum

Source Address

Destination Address

Source Address

Destination Address

Payload Length Hop LimitNext Hdr

Flow LabelTraffic
Class

Vers
6

v4 Header = 20 Bytes + Options
v6 Header = 40 Bytes

354

UDP Data Protection

• 16-bit Internet Checksum covers the UDP
header and payload

• Optional for IPv4 UDP
• Required for IPv6 UDP

355

TCP Data Protection

• 16-bit Internet Checksum over the entire
segment

• Roughly every 65536th corrupted segment
goes undetected

356

The Danger Of Offloading

• Many NICs today support TCP Checksum
offloading

• Studies have shown many errors occur
during DMA transfers
– Offloading would miss these

• Nothing beats reading the data back from
disk, e.g. md5sum

357

Ethernet Data Protection

• IEEE 802 CRC32
• Strong error detection for 1500 byte packets
• Detects all triple bit errors up to 11455

bytes
• Roughly 1 in 4 billion errors go undetected,

but strength is non-uniform
• http://www.cse.ohio-state.edu/%7Ejain/papers/xie1.htm

358

Cryptographic Hashes

• One-way functions
– Easy to compute, nearly impossible to invert

• Collision free
– Infeasible to find two inputs that result in the

same output
• The workhorses of modern cryptography

359

Cryptographic Hash History

• 1990, MD4, Ron Rivest
• 1992, MD5
• 1993, SHA, NSA (a.k.a. SHA-0)
• 1995, SHA-1
• 2002, SHA-256, SHA-384, SHA-512
• 2004, SHA-224
• 2010, NIST no longer endorses SHA-1

360

Common Hashes

• MD5 – Message Digest algorithm #5
– 128 bit hash, RFC1321 (April 1992)
– md5sum --check md5sums

• SHA-1 – Secure Hash Algorithm #1
– 160 bit hash

361

Stronger Hashes

• Recent work has shown some weakness in
MD5 and SHA-0 (Crypto2004 conference)

• NIST plans to phase out SHA-1 by 2010
• NIST FIPS 180-2, Secure Hash Standard,

Aug 2002, also includes:
– SHA-224, SHA-256, SHA-384, SHA-512
– http://csrc.nist.gov/CryptoToolkit/tkhash.html

362

HMAC

• Keyed-Hash Message Authentication Codes
• Combines a secret key and a cryptographic

hash
• HMAC-SHA1, HMAC-MD5, HMAC-RIPEMD
• RFC2104, Feb 1997, ANS X9.71

363

Advanced Encryption Standard (AES)

• AES (Rijndael) data encryption/decryption
• Federal Information Processing Standards

Publication, FIPS-197
• 128, 192, 256 bit keys, 128 bit data blocks
• Can be used as a Message Authentication

Code (MAC)
– AES-XCBC-MAC-96, RFC 3566, Sep 2003

• scp defaults to aes128-cbc and hmac-md5

364

Encryption/Hash Speeds
“openssl speed” OpenSSL 0.9.7d, 2.6 GHz Xeon, 400 MHz FSB, 512KB L2 cache

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
md2 2335.38k 5298.12k 7781.61k 8827.85k 9161.67k
mdc2 6480.09k 7374.90k 7717.70k 7677.92k 7790.82k
md4 19268.23k 63363.31k 173880.13k 303676.32k 391984.43k
md5 16325.52k 54524.02k 143885.24k 246730.38k 311775.74k
hmac(md5) 17483.15k 58603.05k 151600.95k 252513.14k 313778.51k
sha1 15804.80k 51292.97k 126032.04k 199600.09k 240482.89k
rmd160 11629.85k 31237.76k 62984.82k 84785.10k 93663.74k
rc4 84407.69k 93179.20k 95925.54k 96411.00k 96438.66k
des cbc 43456.93k 43846.81k 43784.50k 43868.37k 43858.06k
des ede3 17158.70k 17168.26k 17128.48k 17191.63k 17186.59k
idea cbc 24765.82k 25599.68k 25818.65k 25979.85k 25950.68k
rc2 cbc 24287.21k 24957.35k 25301.88k 25439.74k 25317.71k
rc5-32/12 cbc 91339.13k 89333.21k 90386.24k 90881.38k 90675.90k
blowfish cbc 77119.43k 78330.17k 78255.31k 78479.08k 77552.78k
cast cbc 48512.65k 50893.86k 51452.11k 51747.77k 51385.43k
aes-128 cbc 70686.37k 65725.38k 65752.90k 65180.02k 64708.38k
aes-192 cbc 55336.89k 57739.22k 58446.44k 57441.14k 57590.31k
aes-256 cbc 56045.36k 52542.96k 52584.07k 51628.97k 51985.99k

Results are in Bytes per second
AES-128 CBC ran ~0.5 Gbps

365

Local Transfer Examples

• 744 MB file, 2.6 GHz Xeon
– Disk read, loopback interface, no disk write
– both encrypt and decrypt for scp

• wget –O /dev/null ftp://localhost/tmp/file

– 0:13 sec, 455 Mbps
• scp localhost:/tmp/file /dev/null

– AES-128 (default), 0:49 sec, 121 Mbps
– 3DES, 1:53, 53 Mbps
– Blowfish, 0:39, 153 Mbps

366

Remote Transfer Examples

• Aberdeen, MD to San Diego, CA, 744 MB
• scp 14 minutes

– compared to 49 seconds on localhost
• wget v1.9.1, 4 minutes

– from vsftpd 1.2.2 server at Aberdeen
• wget –passive-ftp, 15 seconds

– wget with large window modification

367

Summary: Layers of Protection

• Application: Hashes
• Transport: TCP/UDP checksum

– Optional: SSL/TLS/DTLS
• Network: IP header checksum

– Optional: IPsec
• Link: Ethernet CRC32 or POS FCS-32
• Physical: symbols, ECC, FEC

Storage Area Networks

SANs and IP Storage

369

Storage Area Network (SAN)

• Dedicated network for accessing Network
Attached Storage (NAS)

• Usually Fibre Channel
– Fibre Channel Protocol (FCP) = SCSI

Commands over FC
• IP Storage is coming

370

Fibre Channel

• Began in 1988 to improve HIPPI
connections
– First ANSI standard in 1994
– 1 Gbps (100 MBps) standard in 1996

• Runs on both fiber and copper
• Ring or mesh (switch) topology
• FC disks have dual / redundant connections

371

Fibre Channel Architecture

12 25 50 100 MBps

Striping, Hunt groups, Multicast

8B/10B encoding

Connections, Datagrams

• 2 Gbps 2001, 4 Gbps 2004

• 10 Gbps available, but not backward compatible

FC100 = GigE physical layer

FCP

372

FCIP

• Fibre Channel over TCP/IP
– Encapsulates FC frames in TCP/IP

• Provides Inter-Switch Links (ISLs)
• Allows multiple FC SAN’s to be connected

via the internet
• RFC 3821, July 2004

373

iFCP

• Internet Fiber Channel Protocol
• FC-4 layer interface with a TCP/IP sublayer

– Replaces the FC SAN with an IP network
• Gateways interface between FC and IP

devices
• Emulates fabric services
• RFC4172, Sep 2005

374

iSCSI
• Internet Small Computer Systems Interface

– Serialized SCSI over TCP
– Initiator to target (tcp port 3260)

• Removes 25 meter distance limit
• Includes initiator/target authentication via iSCSI

Login PDUs
– Challenge Response Authentication Protocol (CHAP)
– Secure Remote Password (SRP)

• Uses CRC32c (but optional!)
• RFC 3720, Apr 2004

375

Remote Direct Memory Access (RDMA)

• Zero-copy end-to-end data movement
• Useful to things like MPI
• Available over InfiniBand
• Available over TCP/IP via iWarp

– Would be easier to implement with SCTP
• Sockets Direct Protocol (SDP) can run over

iWarp or InfiniBand RDMA

376

iWarp

• Collective name given to three protocols
– MPA – Marker PDU Alignment for TCP
– DDP – Direct Data Placement
– RDMAP – RDMA Protocol

• Allows RDMA over TCP/IP
• Defined by the RDMA Consortium

– www.rdmaconsortium.org

377

Enhanced Network Interface Cards

NIC TOE NIC RNIC iSCSI NIC

IP

TCP

MPA

DDP

RDMAP

iSER

iSCSI

TCP Interface

RDMA Interface

SCSI Interface

378

IP SAN Security
• FC SANs provide little to no security
• FCIP, iFCP, iSCSI all depend on IPsec for per-

packet
– Authentication
– Confidentiality
– Integrity
– Replay protection

• RFC 3723, Securing Block Storage Protocols over
IP, Apr 2004

379

SANs in Perspective
• Came out in the 10/100 Mbps Ethernet era

– IP networks simply weren’t fast enough, nor
did they have QoS controls

• Held on through the introduction of 1Gbps
Ethernet
– Claimed to still be faster and cheaper

• Today: Can no longer compete with 1 GigE
and soon 10 GigE pricing

• IP attached iSCSI storage is coming

Peer to Peer (P2P)
File Transfer

381

Peer to Peer Basics

• Remove the central server bottleneck
– Like automatic mirroring

• Can download data from anyone (peers)
with a copy, or partial copy

• Can find data from central servers or peers

382

P2P File Sharing Networks
• Napster

– Began June 1999, over 26 million users by Feb 2001
– Primarily served music (mp3) files
– Central server to find peers, download from peer(s)

• FastTrack
– No central database, flooding, order N lookups
– Clients: KaZaA, Grokster, iMesh, (Morpheus)
– Closed source network, began March 2001

• Gnutella (G1)
– Open source FastTrack like network
– Clients: LimeWire, Morpheus / Gnucleus

383

P2P File Sharing Networks
• eDonkey2000

– Did for movies what Napster did for music
– Allows partial uploads
– Clients: eDonkey, eMule

• Direct Connect
– Began Nov 1999
– Over 12 PB of data on 250k hosts in 2004!
– “Hubs” keep track of network members

384

i2Hub
• Direct Connect P2P

network on Internet2
• “faster because it uses

Internet2”
• Reality check:

– “at UCLA, i2hub
downloads run 30 kBps
to 200 kBps, vs. 600
kBps for a good
server”

• Mar 2004 – Nov 2005

385

Distributed Hash Tables (DHT)
• Hot topic since 2001

– CAN, Chord, Pastry, Tapestry
– Could be used to replace DNS, web caches, etc.

• O(log N) vs. O(N) lookups
• Provable properties
• Many research projects in DHT’s

– FreeNet, OceanStore
– Automated P2P backup projects

• Pastiche and PAST built on Pastry

386

Newer P2P Networks

• Gnutella2 (G2)
– DHT network from Shareaza

• Overnet
– DHT network from eDonkey2000

• NEONet
– DHT network from Morpheus

387

BitTorrent

• 35% of all internet traffic?
– Maybe in some places

• http://www.bittorrent.com/
• http://dessent.net/btfaq/
• http://en.wikipedia.org/wiki/Bittorrent

388

BitTorrent

Web Server

file.torrent
Tracker Host

Peer Peer

Peer

Peer

PeerData Transfer

How peers
find each other

How peers
find files

389

BitTorrent Terminology

• Peer – a client with a file
– “Seed” if complete file
– “Leach” if partial file

• Swarm – the collection of all peers with
parts or all of a given file

• “Swarming” – uploading partial files

390

BitTorrent – How it Works

• .torrent file
– Tracker location(s)
– 256 KB file pieces, SHA1 hash of each piece

• Downloads
– 16 KB sub-piece transfers
– 5 pipelined requests (~80 KB window)
– 4 active peers, reselected every 10 seconds

• New opportunistic unchoke every 30 seconds

391

BitTorrent – Reality Check

• One seed, One leach, Local LAN
– 14 Mbps to 40 Mbps

• Two seeds, One leach, Local LAN
– 14 Mbps + 14 Mbps = 30 Mbps

• One seed, One leach, CA to MD
– 3.4 Mbps

392

mod_bt – Integrated Web/BitTorrent

• Combines tracker and seed functions in an
Apache module

• Worse case, downloads like a web server
• BitTorrent function can only help
• www.crackerjack.net/mod_bt/

393

New BitTorrent Features

• Multiple trackers per torrent
• Trackerless torrents using a DHT
• Peer exchange (PEX)
• Encryption
• Web seeding

394

Abstract Storage Layers

• Internet caches
• I2 Logistical Networking
• Decouple LAN/WAN tuning issues
• Should storage be a network resource?

395

Internet Web Caches

• IRCache project 1995-2000
• Internet Cache Protocol (ICP)

– RFC2186, RFC2187, Sep 1997
– Used in Squid and several web cache products
– http://icp.ircache.net/

• Hyper Text Caching Protocol (HTCP)
– RFC2756, Jan 2000

396

Logistical Networking

• http://loci.cs.utk.edu/
• Internet Backplane Protocol (IBP)
• Logistical Backbone (L-Bone)

– Directory of IBP depots
• exNodes

– Collection of IBP allocations
• Logistical Runtime System (LoRS)

– Upload and Download services

397

IBP

• Implements append-only byte arrays
• Often anonymous creation, limited time

storage
• Need capabilities to access data

– Crypto secure URL’s: read/write/manage
• Supports Data Mover plugins
• 4 GB allocation limit?

398

IBP Commands

• Storage Management
– IBP_allocate, IBP_manage

• Data Transfer
– IBP_store, IBP_load, IBP_copy,
IBP_mcopy

• Depot Management
– IBP_status

399

exNodes
• Holds information and

capabilities about
storage on one or more
IBP depots
– think inode for L-Bone

storage
• XML representation

– Can be emailed, etc.

400

L-Bone

557 public IBP servers in 30 countries and 38 American states.
5.6 TB online (21 TB listed), 99% free - Oct 2006

401

Logistical Run Time System
• LoRS tools for using the L-Bone
• Finds allocations, creates exNodes, etc.
• Command line, visual, and java versions

402

Example Application: IBPvo

http://promise.sinrg.cs.utk.edu/ibpvo/about.html

403

PlanetLab

• Think world-wide shared Linux cluster
• Over 100 universities doing research in

overlay networks, routing, P2P, security,
performance, etc.

• Over half of the L-Bone servers are PlanetLab
hosts

• Internet2 has PlanetLab hosts on the backbone

404

Review
• High performance comes from all levels

– They complement each other
• Network capacity vs. speed
• How TCP throughput depends on delay,

loss, packet size
• Importance of window and buffer sizes and

how to tune them

405

Review
• How to test and debug network

performance
• Protect your data, the network isn’t perfect
• TCP continues to improve, most notably in

congestion control
• Alternatives exist: SCTP, DCCP, and UDP

transport experiments
• Storage Area Networks and IP storage

406

Review

• Peer to Peer is where the file transfer action is
– But most P2P assumes poor network performance
– High performance BitTorrent hasn’t been written yet

• There is a lot of work today in DHT and abstract
storage layers

• Network Channels are coming!
– The future will be interesting

407

Recommended Resources
• System tuning details

– http://www.psc.edu/networking/projects/tcptune/
• Tom Dunigan’s Network Performance Links

– http://www.csm.ornl.gov/~dunigan/netperf/netlinks.html

• SLAC’s Network Monitoring pages
– http://www-iepm.slac.stanford.edu/

• CAIDA Internet Measurement Tool Taxonomy
– http://www.caida.org/tools/

408

Recommended Resources

• nuttcp and Iperf for TCP and UDP testing
– ftp://ftp.lcp.nrl.navy.mil/pub/nuttcp/
– http://dast.nlanr.net/Projects/Iperf/

• tcptrace and xplot for TCP traces
– http://www.tcptrace.org/

• Web100 / Net100
– http://www.web100.org/
– http://www.csm.ornl.gov/~dunigan/net100/

409

Resources

• Request For Comments (RFC)
– http://www.rfc-editor.org/
– ftp://ftp.rfc-editor.org/in-notes/rfc968.txt

• Internet Engineering Task Force (IETF)
– http://www.ietf.org/
– http://www.ietf.org/html.charters/wg-dir.html

410

W. Richard Stevens’ Books

• TCP/IP Illustrated, 3 volumes
• Unix Network Programming,

2 volumes
• http://www.kohala.com/start/

411

Resources
• High Performance

TCP/IP Networking
• M. Hassan, R. Jain
• October, 2003
• ISBN: 0130646342

Thank You!

Phillip Dykstra
WareOnEarth Communications Inc.

2109 Mergho Impasse
San Diego, CA 92110

phil@sd.wareonearth.com
619-574-7796

